
.
* *
* *
* *
* U S L / D B M S N A S A / R E C O N *
* *
* *
* W O R K I N G P A P E R S E R I E S *
* *

Re po r t N u m b e r

* *
* *
. i

T h e U SL/DM NASAIREWN Wo r k i n g Paper Series contains a
collection of reports representing results of activities being
conducted by the Computer Science Department of the University of
Southwestern Louisiana pursuant to the specifications of National
Aeronautics and Space Administration Contract N u m b e r NAW-3846.
T h e w o r k on this contract i s being performed jointly by the
U n i v e r s i t y of Southwestern Louisiana and Southern University.

For m o r e information, contact:

W a y n e D. Do m i n i c k -

Editor
U SL/DM NA S A / R E C Q N W o r k i n g Paper S e r i e s

Computer Science Department
University of Southwestern Louisiana

P. 0. Box 44330
Lafayette, Louisiana 70504

(318) 231-6308

.
I WRKING PAPER SERIES I

-EDGE BASED SYSTEMS:

A CRITICAL SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

A T h e s i s

Presented to

T h e Graduate Faculty of

The University of Southwestern Louisiana

In Partial Fulfillment of the

Requirements for the Degree

M a s t e r of Science

.

Srinu Kavi

December 1984

-EDGE BASED S Y S T M :

A CRITICAL SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

Srinu Kavi

.

APPROVED:

---------------_------------- _------_________------------
Wayne D. Dominick, Chairman William R. Edwards, Jr.
Associate Professor Associate Professor
of Compter Science o f Computer Science

I w i s h - t o express my gratitude to Dr. W a y n e Dominick, for

his invaluable time and conrments.

I w o u l d like to thank Dr. William Edwards and Dr. Thomas

C o u s i n s for serving on my conmittee.

I w o u l d also like to express my deepest gratitude to my

parents, Mr. and M r s . Kousalya Ranga Rao, and to my brother, Dr.

K r i s h n a M. Ka v i , for their constant encouragement and support.

Lastly, I w o u l d like to thank m y special friend, L i n Yan,

for her time and emotional support. .

i i i

TABLE OF CONTENTS

LIST OF TABLES .
LIST OF FIGURES .
Chapter

1 . INTRODUCI'ION

2 . -EDGE-BASED S Y S T M (KBSS
.

2.1 Introduction
2.1.1 Characteristics of KBSs

2.1.1.1 Organization of Knowledge
2.1.1.2 Performance
2.1.1.3 Utility
2.1.1.4 Transparancy
2.1.1.5 H e u r i s t i c s
2.1.1.6 Flexibility
2.1.1.7 Modularity
2.1.1.8 Uncertainty

2.1.2 Types of KBSs
2.1.2.1 Interpretation Systems
2.1.2.2 Prediction Systems
.

2.1.2.3 Diagnosis Systems
2.1.2.4 Design Systems
2.1.2.5 Planning Systems
2.1.2.6 Monitoring Systems

Page

xiii

xiv

1

4

4

5 .
5

5

6

6

7

7

8

8

9

12

13

13

14

14

15

i v

2.1.2.7 Debugging Systems 16

2.1.2.8 Repair Systems 16

2.1.2.9 Instructional Systems 16

2.1.2.10 Control Systems 17

2.1.2.11 K n o w l e d g e Acquisition Systems . . 17

2.1.2.12 Expert System Construction Systems 18

2.1.2.13 Image Understanding Systems . . . 18

2.1.2.14 Concept Formation Systems 19

2.1.3 Knowledge and Data 19

2.1.4 Knowledge and Skill 20

2.1.5 Expert and Novice 20 .
2.1.6 KBSs and Expert Systems 21

2.2 A Hypothetical KBS 23

2.3 KBS Components 28

2.4 Knowledge Base 29

2.4.1 Knowledge Sources 29

2.4.2 Fact Files 31

2.4.3 Types of Knowledge 31

2.5 Inference Engine 34
2.5.1 Knowledge Use and Control 34

2.5.2 Knowledge Acquisition 35

2.5.3 Explanation 35
.

2.6 Interface 36

2.6.1 U s e r Interface 37

2.6.2 Expert Interface 37

2.6.3 Data Interface 38

V

2.7 Workspace Representation 39

2.7.1 Plan 39

2.7.2 Agenda 39

2.7.3 History 39

2.7.4 Solution Set 40

2.8 Separation of KBS Elements 40

2.9Sumnarg . 41

3 . TECHNIQUES USED TO CONSTRUCI' KBSs 42

3.1 Introduction 42

3.1.1 Origins of KBS Techniques 42

3.1.2 Choices and Restrictions 44 .
3.1.3 Knowledge Representation Problems 46

3.1.4 Knowledge Representation Forms 47

3.1.5 K n o w l e d g e Representation Unit 49

3.1.6 Credibility F a c t o r s 51

3.1.7 Procedural Versus Declarative
Representation 54

3.2 Methods of Representing KS 57

3.2.1 Introduction 57

3.2.2 Finite-State Machine 61

3.2.2.1 Introduction 61

--3.2.2.2 Example 1 62

3.2.2.3 Example 2 63

3.2.2.4 Control Mechanism 65

3.2.2.5 Characteristics of FSM 69

3.2.3 Programs 7 0

3.2.3.1 An Example 70

vi

3.2.3.2 Invocation Methods 73

3.2.3.3 Control Structures 74

3.2.3.4 Advantages and Disadvantages . . . 75

3.2.4 Predicate Calculus 75

3.2.4.1 Introduction 75

3.2.4.2 P r e d i c a t e Calculus Definition . . 76

3.2.4.3 Some Definitions 84

3.2.4.4 An Example 85

3.2.4.5 Characteristics of PC 88

3.2.4.6 Advantages and Disadvantages . . . 90

3.2.4.7 Systems That Use PC 91 -
3.2.5 Production Rules 92

3.2.5.1 Introduction 92

3.2.6.2 Production SystemTypes 92

3.2.6.3 Production SystemComponents . . . 94

3.2.6.4 Conflict Resolution Strategies . . 95

3.2.6.5 Example 1 96

3.2.6.6 Example 2 99

3.2.6.7 Characteristics of PSs 110

3.2.6 Semantic Networks 117

3.2.6.1 Introduction 117

3.2.6.2 Definition 117

3.2.6.3 Example 1 118

3.2.6.4 Example 2 119

3.2.6.5 General Versus Specific Knowledge 124

3.2.6.6 Advantages and Disadvantages . . . 125

-

vi i

3 . 2 . 6 . 7 Status o f Semantic Networks . . . 127

3 . 2 . 7 Frames 127

3 . 2 . 7 . 1 Introduction 127

3 . 2 . 7 . 2 Frame Characteristics 129

3 . 2 . 7 . 3 Example 1: Frame Representation . 132

3 . 2 . 7 . 4 Example 2 : A Recognition Scenario 136

3 . 3 Inference Engine (IE) 139

3 . 3 . 1 Primary Functions of I E 139

3 . 3 . 2 Some Definitions 140

3 . 3 . 3 I E Strategies 1 4 1

3 . 3 . 3 . 1 Forward Chaining 141 i

3 . 3 . 3 . 2 Backward Chaining 142

3 . 3 . 3 . 3 C h a i n B o t h W a y s 142

3 . 3 . 3 . 4 M i d d l e T e r m c h a i n i n g 142

3 . 3 . 3 . 5 Directionality of Control S t r a t e g y 146

3 . 3 . 3 . 6 Breadth-First Control Strategy . . 148

3 . 3 . 3 . 7 Depth-First Control Strategy . . . 150

3 . 3 . 4 M e t h o d s of Implementing the IE 152

3 . 3 . 4 . 1 Search Techniques 154

3 . 3 . 4 . 2 S e a r c h S y s t e m Components 154

3 . 3 . 4 . 3 Evaluation F u n c t i o n 156

3 . 3 . 4 . 4 Ordered S e a r c h A l g o r i t h m 157
-

3 . 3 . 4 . 5 A* - An Optimal Search A l g o r i t h m . 1 6 1

3 . 3 . 4 . 6 AND/OR G r a p h 163

3 . 3 . 5 M e a s u r e s of Performance 169

3 . 3 . 5 . 1 Penetrance 169

viii

3.3.5.2 Branching F a c t o r 170

3.3.5.3 Examples 171

3.4 Workspace Representation 173

3.4.1 Introduction 173

3.4.2 HEARSAY-Blackboard 174

3.4.3 AND/OR Graph 180

3.4.4 Blackboard Versus AND/OR Graph 182

3.5 The Interface 182

3.5.1 Functions of the Interface 182

3.5.2 U s e r Interface 184

3.5.2.1 Introduction 184 .
3.5.2.2 U s e r Interface C h a r a c t e r i s t i c s . . 185

3.5.2.3 The U s e r Input 185

3.5.2.4 P a r s i n g Strategies 186

3.5.2.5 Parsing Systems 188

3.5.2.6 Output to the User 193

3.5.2.7 Methods of Providing Explanations . 194

3.5.3 Expert Interface 196

3.5.3.1 Introduction 196

3.5.3.2 Expert Interface Tasks 197

3.5.4 Knowledge Acquisition (KA) P r o c e s s 198
-

3.5.4.1 Introduction 198

3.5.4.2 Problem Identification 199

3.5.4.3 Conceptualization Stage 201

3.5.4.4 Formalization Stage 202

3.5.4.5 Implementation Stage 202

ix

3 . 5 . 4 . 6 Testing Stage 203

3 . 5 . 4 . 7 Difficulties in KA 203

4 . KBS BUILDING TOOLS AND LANGUAGES 206

4 . 1 Introduction 206

4 . 1 . 1 General Purpose Programning Languages . . 207

4 . 1 . 2 Skeletal Systems 2 1 0

4 . 1 . 3 General Purpose Representation Languages . 211

4 . 1 . 4 Computer-Aided D e s i g n T o o l s 212

4 . 2 C a s e Studies 2 1 3

4 . 2 . 1 EMYCIN 213

4 . 2 . 1 . 1 O v e r v i e w o f EMYCIN 213 .
4 . 2 . 1 . 2 Knowledge Representation 2 1 4

4 . 2 . 1 . 3 T h e EMYCIN Inference Engine . . . 219

4 . 2 . 1 . 4 EMYCIN Facilities 2 2 0

4 . 2 . 2 HEARSAY-I11 220

4 . 2 . 2 . 1 O v e r v i e w o f HEARSAY-111 2 2 0

4 . 2 . 2 . 2 Knowledge Representation 2 2 2

4 . 2 . 2 . 3 HEARSAY-I11 Inference Engine . . . 2 2 5

4 . 2 . 3 A G E 226

4 . 2 . 3 . 1 O v e r v i e w o f AGE 226

- 4 . 2 . 3 . 2 Blackboard Framework 227

4 . 2 . 3 . 3 AGE Facilities 231

5 . APPLICATION CONSIDERATIONS 2 3 3

5 . 1 Introduction 233

5 . 2 Initial Considerations 2 3 4

5 . 2 . 1 T a s k Suitability 2 3 4

X

5.2.2 Availability of Expert 235

5.2.3 Knowledge Acquisition P r o c e s s 236

5.2.4 Agreement With the Domain Theory 238

5.2.5 Expert's Model 238

5.2.6 Expert's Principles of Reasoning 238

5.2.7 Intermediate Levels of Abstraction 239

5.2.8 General Versus Domain Specific Knowledge . 239

5.2.9 End U s e r s 239

5.2.10 Unanticipated Support 240

5.2.11 Cost Versus Benefits 240

5.3 Technology Considerations 241

5.3.1 Building Prototype System 241

5.3.2 Chunk Size 241

5.3.3 Representation of Knowledge 242

5.3.4 Inference Engine 242
5.3.5 M e t a Knowledge 243
5.3.6 Procedural Knowledge 243

5.3.7 Addition of Knowledge by the U s e r s 243

5.3.8 Extensibility 244

5.3.9 Knowledge Representation Tools 244

5.3.10 Design of Tools f o r Building KBSs 246

5.4 Environmental Considerations 248

5.4.1 Interactive KBSs 248

5.4.2 Interactive Development Environment . . . 248

5.4.3 Local Operating Environment 249

6 . CONCLUSIONS . 250

-

xi

7 . POTENTIAL FUTURE RESEARCH AREAS 2 5 3

APPENDICIES . 2 6 0

A . CASE STUDY . MYCIN 2 6 0

A.1MYCIN’s P r o b l e m D o m a i n 2 6 0

A . 2 MYCIN’s Knowledge Base 2 6 2

A . 2 . 1 Representation o f Rules 2 6 2

A . 2 . 2 Context T r e e 2 6 3

A . 2 . 3 Categorization o f Rules 2 6 6

A . 2 . 4 Clinical Parameters 2 6 7

A.2.5 Simple Lists 2 6 9

A . 2 . 6 Knowledge Tables 2 7 0 i

A . 2 . 7 Specialized Functions 2 7 0

A . 3 MYCIN’s Inference Engine 2 7 0

A . 4 Certainty Factors 2 7 6

A . 5 Context T r e e 2 7 8

A . 6 MYCIN’s Explanations 2 7 6

A . 7 MYCIN’s Interface 2 7 8

A . 8 Evaluation o f MYCIN 2 7 8

B . LIST OF KBSs 2 8 4

C . FIFTH GENERATION PROJECT 2 8 8

REFERENCES . 2 9 4

ABSTRACX . 306
.

BIOGRAPHICAL SKETCH 3 0 7

xii

LIST OF TABLES

Ta b l e s Page

2-1 Some Existing Expert Systems 10

2-2 G e n e r i c Categories of Knowledge Engineering
Applications 11

3-1 O r i g i n s of KBS Techniques 43

3-2 Definitions of the Logical Connectives 83

A-1 Ratings of Antimicrobial Selection 282

.

xiii

LIST OF FIGURES

Figures P a g e

2-1 KBS Elements and Their Relationship 30

3-1 Restrictions on Choices of KBS Methodologies . . 45

3-2 Knowledge Representation Forms 48

3-3 Finite State Machine Representation
of a Lamp With a Pull Chain 62

3-4 Finite State Representation of a Plan to
Make and Drink Coffee Using MR . COFFEE 64

3-5 Finite State Recognizers 67 .
3-6 Procedural Knowledge Example 72

3-8 Productions and Interpreter 97

3-9 Production R u l e s f o r Automotive System KB 101

3-10 Data Gathering Procedure Fact File 103

3-11 Example Flow in Auto Diagnostic System 105

3-12 Back Chaining 107

3-13 Fragment of Graph Structure 109

3-14 Characteristics of Production Systems 1 1 1

3-15 Example Semantic Network 120

3-16 Example Frame Definitions 134

3-17 Inexact Match by a F r a m e System 137

3-18 Chaining Examples 144
3-19 Diagram f o r Problem Reduction 145

3-20 8-Puzzle . 149

.

xiv

3 - 2 1

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3 - 3 0

3 - 3 1

3-32

3-33

4-1

4-2

A- 1

A- 2

A- 3

T h e T r e e Produced by a Breadth-First S e a r c h . . . 151

Depth-First Back Chaining 153

T h e T r e e Produced b y a Depth-First Search 155

The T r e e Produced b y a n Ordered Search 160

An AND/OR Tr e e 164

Sum C o s t s . 168

Example M o v e G r a p h and Balanced T r e e 172

HEARSAY-I1 Levels of Represenation and KSs . . . 177

Blackboard Example 178

Example A N D / O R G r a p h 181

A Finite State Transition D i a g r a m 189 .
A Recursive Transition N e t w o r k 191

S t a g e s of Knowledge Acquisition 2 0 0

EMYCIN O v e r v i e w 215

A Sample Context T r e e 217

A Sample Context T r e e 265

T h e MINITOR M e c h a n i s m 274

The FINDOUT M e c h a n i s m 275

.

x v

Chapter 1

I NTRODUCT I ON

A f t e r being in a relatively dormant state for many years,

o n l y recently i s artificial intelligence (A I) - that branch of

computer science that attempts to have machines emulate

intelligent behavior - accomplishing practical results. M o s t of

these results can be attributed to the design and use of

Knowledge-Based Systems, KBSs (o r expert systems) - problem

solving computer programs that can reach a level of performance

comparable to that of a h u m a n expert in some specialized p r o b l e m

d o m a i n [Nau, 8 3 1 . These systems c a n act as a consultant for

various requirements like medical diagnosis, m i l i t a r y threat

analysis, project risk assessment, etc. These systems possess

knowledge to enable t h e m to m a k e intelligent decisions. T h e y

are, h o w e v e r , not m e a n t to replace the human specialists in any

particular domain.

This r e p o r t surveys recent w o r k in interactive KBSs.

explaining KBS concepts, issues, and KBS technology.

Basic concepts o f K B S s , including the characteristics and

types of KBSs, and differences between knowledge and data,

knowledge a n d skill, and difference between a n expert and a

n o v i c e a re presented in C h a p t e r 2. A l s o in C h a p t e r 2, a brief

d e s c r i p t i o n o f a hypothetical KBS, and various components in a

KBS a r e presented.

1

2

In Chapter 3, various techniques used to construct KBSs are

discussed in- detail.

In S e c t i o n 3.1, a n introductory discussion is presented for

origins of KBS techniques, various choices and restrictions,

knowledge representation problems, knowledge representation

forms, knowledge representation units, and credibility factors.

A l s o in S e c t i o n 3.1, the differences between procedural and

declarative representations are discussed.

In S e c t i o n 3.2, various m e t h o d s for representing knowledge

in KBSs a r e discussed. Specifically, six representation

techniques - finite-state m a c h i n e s , programs, predicate calculus',
.

production rules, semantic networks, and frames - are discussed

in detail.

In S e c t i o n 3.3, various issues and techniques related to

the inference engine o f a KBS are discussed. A l s o in Section

3.3, two performance m e t r i c s that are useful in evaluating the

performance o f a n inference engine are described.

In S e c t i o n 3.4, after providing brief introduction for

w o r k s p a c e representation in KBSS, two techniques

(HEARSAY-Blackboard and AND/OR Gr a p h) are discussed in some

detail. -

In S e c t i o n 3.5, various functions and types of interfaces

a r e discussed. A l s o in 3.5, the knowledge acquisition process

is described. Specifically the phases involved and problems

associated with the knowledge acquisition process are discussed.

In C h a p t e r 4, various tools and languages to build KBSs are

3

discussed.

In Section 4.1 an introduction to various tools and

languages i s presented. In Section 4.2, three case studies

(EMYCIN, HEARSAY-111, and AGE) for KBS building tools are

described.

In Chapter 5, various considerations that should be taken

into account before (and during) building a KBS are presented.

Conclusions are presented in Chapter 6 and, in Chapter 7,

many problems that exist in current KBSs and, hence, future areas

of research are identified.

T h r e e appendicies are provided i n this report. In Appendix

A, a case study of a KBS (MYCIN) i s described in detail. A list

of existing KBSs and brief description of those systems are

provided in Appendix B. In Appendix C, a brief introduction is

provided for the Japanese Fifth Generation Computer Project.

And, finally, extensive s e t o f references are provided at

the end of this report.

Chapter 2

-EDGE-BASED SYSTEMS (KBSS)

I t i s necessary to distinguish, at the outset, between

knowledge-based systems and other computer-based systems that

contain or incorporate knowledge. Almost all computer programs

and systems contain knowledge of at least two kinds: knowledge

about things and knowledge about w h a t to do w i t h things - that

is, h o w to m a n i p u l a t e or transform them. A KBS can be defined in

the following way: "A knowledge-based system i s one in w h i c h

knowledge is collected in one or m o r e -nts (called

knowledge sources) and i s of the kind that facilitates problem

solving (reasoning) in a w e . y e l l -defined p r o b l e m domain and

w h o s e p e r f o r m a n c e i s comparable to that of a human expert in some

specialized p r o b l e m domain". (This definition i s based on the

definitions presented in [Barnett & Bernstein, 771 and [Nau,

831).

F r o m this definition, however, i t is not readily apparent

what distinguishes such a s y s t e m f r o m a n ordinary application

program. Many application programs make use of specialized

problem-solving knowledge and m a n y of t h e m reach h i g h levels o f

performance [Nau, 8 3 1 . The discussion in the next section should

help m a k e that distinction.

-

4

5

2.1.1 m r a c t v i s t its i & K E s x

Some important characteristics of KBSs (and differences with

other computer-based systems) are discussed in the following

sub-sections.

M o s t computer programs organize knowledge on two levels:

data a n d program. But m o s t knowledge-based systems organize

knowledge o n three levels: data, knowledge, and control.

At the d a t a level i s information about the current problepl

and the current state of affairs in the attempt to solve the

problem.

At the knowledge base level i s general knowledge about the

p r o b l e m d o m a i n the system i s designed and built f o r .

At the control level are the methods (inference engine) o f

applying general knowledge to solve the problem.

2 . 1 . 1 . 2 P e r f o r m n c e

KBSs handle real-world, complex problems w h i c h require a n

expert's interpretation (or expertise). The experts produce

consistently- high-quality results in m i n i m a l time (i.e., they

s h o w "high performance"). H i g h performance requires that the

K B S s h a v e not only general facts and principles but the

specialized ones that separate human experts f r o m novices

[Buchanan, 8 2 1 . Accurate and h i g h quality results are shown in

-

m a n y successfyl KBSs in restricted classes of problems.

However; currently there are n o (known) formal metrics to

evaluate the performance of KBSs (see Chapter 7) .

. hL-
. . 2.1.1.3 UtllltV

Designers o f KBSs are motivated to build these systems

because of the demonstrated need in m a n y application areas, in

a d d i t i o n to constructing programs that serve as vehicles for AI

research. F o r example, the motivation for developing the MYCIN

s y s t e m - a s y s t e m which provides consultive advice on diagnosis

o f a n d therapy f o r infectious diseases, in particular, bacteriai
.

infection in the blood, bacteremia - w a s the n e e d for more (or

m o r e accessible) consultants to physicians se 1 ec t ing

a n t i m i c robial drugs (see the case study o f MYCIN in Appendix A).

On the o t h e r hand, solving the T o w e r of H a n o i puzzle, per

se, i s not a critical bottleneck in any scientific o r engineering

enterprise. H o w e v e r , in some cases, a task is chosen just

because of i t s inherent importance. M o r e often than not, a

problem’s significance for AI research is a l s o a factor n o w

because KBSs a r e still constructed by researchers for research

purposes [Buchanan, 8 2 1 . Usefulness also implies competence,

consistently h i g h performance, and ease o f use.

O n e of the m o s t important characteristics of a KBS is the

a b i l i t y to conduct a n interactive dialog with the user i.e., the

7

user does n o t - v i e w KBS as a "black box". This me a n s the system

should be --able to provide coherent explanations of i t s line of

reasoning and answers to queries about i t s knowledge and i t s

results, rather than simply printing a collection of orders to

the user. I t is not necessary that KBSs are psychological m o d e l s

of the reasoning of the experts. H o w e v e r , they must be

understandable to persons familiar w i t h the p r o b l e m [Buchanan,

821.

2.1.1.5 H e u r i s t i c s

-
H e u r i s t i c s (or hunches o r rules of thumb) are a n essential

k e y to intelligent p r o b l e m solving because computation all^

feasible, m a t h e m a t i c a l l y precise m e t h o d s are known for only a

relatively f e w classes of problems. A large part of w h a t a KBS

ne e d s to k n o w i s the body of heuristics that specialists use in

solving h a r d problems, i.e., the need to reason w i t h judgemental

knowledge a s well as w i t h formal knowledge of established (or

textbook) theories [Buchanan, 8 2 1 . W i t h the above heuristic

knowledge, the s y s t e m provides expert-level analyses of difficult

situations.

. . . 2 . 1 . 1 . 6 P l e x l b l l l tv

A n o t h e r characteristic of a KBS i s that i t integrates n e w

knowledge incrementally into i t s existing store of knowledge,

i.e., a KBS provides incremental development of knowledge over a n

extended time by letting the developers refine old rules and add

n e w ones.

8

In KBSs, there is a clear separation of the general

knowledge o f a problem d o m a i n and the reasoning m e c h a n i s m w h i c h

uses this knowledge (as w a s mentioned in Section 2.1.1.1,

"Organization o f Knowledge"). W i t h this separation, the program

c a n be changed by simple modification o f the knowledge base,

i.e.. the same general s y s t e m can be used for a variety of

applications, essentially by "unplugging" one set of rules and

"plugging" in another.

-
2.1.1.8 U n c e r t a i n t y

A n o t h e r very important and distinguishing characteristic of

a KBS i s its ability t o r e a s o n under uncertain o r incomplete

information. Let us take the example of MYCIN. I t takes f r o m 12

to 24 hours to determine w h e t h e r there is a n o r g a n i s m and m a k e a

preliminary identification of its general characteristics.

A n o t h e r 24 t o 48 hours a r e required to o b t a i n specific

identification and possibly even m o r e time to determine which

specific antimicrobial drug is most effective in either

counteracting the o r g a n i s m or arresting its growth. In m a n y

cases, the in?ection is serious enough that treatment m u s t be

begun before all of the analyses c a n be completed. Therefore,

a n y recomnended therapy m u s t be based o n incomplete information.

In building KBSs with the above characteristics, researchers

have found that amassing a large amount o f data rather than

9

sophisticated-reasoning techniques i s responsible for m o s t of the

power of thF- system. S u c h KBSs, previously limited to academic

research projects, are beginning to enter the software market

place [Gevarter, 831. Some of the application areas w h e r e KBSs

are used are:

(1) M e d i c a l diagnosis.

(2) M i n e r a l exploration.

(3) Oil-well log interpretation

(4) Chemical and biological synthesis.

(5) M i l i t a r y threat assessment.

(6) Planning and scheduling.

(7) Signal interpretation.

(8) Air-traffic control.

(9) VLSI design.

(10) Equipment fault diagnosis.

(1 1) S p e e c h understanding.

(1 2) S p a c e defense.

(13) KB access and management.

.

T a b l e 2-1 lists a f e w of the existing systems developed for

selected prob-lem areas. A m o r e extensive list i s provided in

Appendix B.

2.1.2 T v F e s nf KBSs

M o s t of the KBS applications fall into a f e w distinct types

and a r e sumnarized in Table 2-2.

10

T a b l e 2-1 SCl'vlE EXISTING EXPERT S Y S T M [Nau, 831

AQ1 Diagnosis o f Plant Diseases

C A S N E T Medical Consulting

DENDRAL Hypothesizing Molecular Structure
f r o m M a s s Spectrograms

DI PMETER ADVI SOR Oil Exploration .
EL Analyzing E l e c t r i c a l Circuits

INTERN1 ST Medical Consulting

KMs Medical Consulting

MACSYMA Mathematical Formula Manipulation

m X Medical Consulting

mmEN Planning DNA Experiments

MYCIN

PROSPECIOR

Medical Consulting

Mineral Exploration

PUFF Medical Consulting

R1 Computer Configuration

11

Table 2 - 2 GENERIC CATEGORIES OF K"LEDGE ENGINEERING

AP PL I CAT IONS

[Hayes-Roth, et al, 8 3 1

INTERPRETATION Inferring Situation Descriptions
from Sensor Data

PREDICT I ON

DIAGNOS IS

DESIGN

Inferring Likely Consequences of -
Given Situations

Inferring System Malfunctions
from Observables

Configuring O b j e c t s Under
Constraints

PLANNING Designing Actions

PvDNITQRING

DEBUGGING

REPAIR

INSTRUCJTION
-

CONTROL

Comparing Observations to Plan
Vulnerabilities

Prescribing Remedies for
Malfunctions

Executing a P l a n to Administer a
Prescribed Remedy

Diagnosing, Debugging, and
Repairing Student Behavior

Interpreting, Predicting,
Repairing and Monitoring System
Be havi or s

12

2.1.2.1 I p t e r a r e t a t i o n Slvstems

Interpretation systems analyze the data or observables and

infer their m e a n i n g . This category c a n be further divided into

two: data analysis systems and situation analysis systems.

T h i s category includes surveillance, speech understanding,

image analysis, chemical structure elucidation, signal

interpretation, and oil-well log interpretation. A k e y

requirement f o r these systems is to find consistent and correct

interpretations of the data. I t i s o f t e n important that analysis

systems be rigorously complete, i.e., they consider the possible

interpretations systematically and discard candidates only w h e n

there is enough evidence to rule t h e m out.

A n example of this type i s DENDRAL w h i c h interprets m a s s

spectrometer d a t a [Feigenbaum, et al, 7 1 1 . T h e data are

m e a s u r e m e n t s of the m a s s of m o l e c u l a r fragments and

interpretation i s a determination of one or m o r e chemical

structures.

This category includes analysis of electrical circuits,

digital circuits, mechanics problems, earthquake damage

assessment f o r structures, and m i l i t a r y threat analysis. A k e y

requirement of these systems, in addition to the requirements of

13

the data analysis systems, i s plausible reasoning and i t s ability

to recover f r o m - tentative assumptions.

An example of this type i s s y s t e m EL [Sussman, 771, w h i c h

uses forward reasoning with electrical laws to compute

electrical parameters (voltage and current) at one node of a

circuit f r o m parameters at other nodes.

2.1.2.2 P r e d i c t i o n Svstems

P r e d i c t i o n systems infer likely consequences (i.e.,

forecast the course of the future) f r o m given situations (past

and present). This category includes w e a t h e r forecasting;

demographic predictions. traffic predictions, crop estimates,

and m i l i t a r y forecasting. A k e y requirement for these systems is

the a b i l i t y to refer to things that change over time and to

events that are ordered in time. T h e y m u s t have adequate m o d e l s

of the w a y s that various actions change the state o f the modeled

environment over time.

.

C u r r e n t l y there i s no k n o w n KBS w h i c h f a l l s into this

category.

2.1.2.3 -nos is sJLsum&
-

D i a g n o s i s systems infer s y s t e m malfunctions (or disease

state in a living system) f r o m observables. T h i s category

includes m e d i c a l , electronic, mechanical and software diagnosis,

and diagnosis of nuclear reactor accidents. Key requirements

include those of interpretation. A diagnostician m u s t understand

14

the s y s t e m organization (i.e., its anatomy) a n d the relationships

and interactions between subsystems.

An example of this category i s INTERNIST-1, a n experimental _ ,

computer based diagnostic consultant for general internal

medicine. T h e system c a n deal with five hundred diseases and i t

i s a b l e to diagnose multiple and simultaneous diseases [Pople,

7 7 1 .

2.1.2.4 Des- S v s t e m

D e s i g n systems develop specifications (or configurations of

objects) that satisfy particular requirements of the d e s i g n
I

problem. T h e y include circuit layout, building design, and

chemical synthesis. Requirements for these systems include

m i n i m i z a t i o n of a n objective function that m e a s u r e s costs and

other undesirable properties of potential design, and the ability

to e x p l a i n and justify the design decisions.

An example of this type is R 1 , a s y s t e m for configuring

Digital Equipment C o r p o r a t i o n VAX computer systems [McDermott.

801.

2.1.2.5 - e -

-

P l a n n i n g systems d e s i g n actions that c a n be carried out to

achieve goals. T h e y include automatic programning, robotics,

planetary flybys, mission planning, d e s i g n of m o l e c u l a r genetics

experiments, and m i l i t a r y planning problems. A k e y requirement

for these systems is that they construct a p l a n that achieves

15

goals without consuming excessive resources or violating

constraints,- I f goals conflict, they establish priorities.

Since planning always involves a certain amount of prediction,

these planning systems also have certain requirements of

prediction systems.

An example of this type is M)LGEN, a genetic engineering

s y s t e m to assist geneticists in planning laboratory experiments

concerned with m a n i p u l a t i o n o f DNA w i t h restriction enzymes

[Martin, et al, 771.

2.1.2.6 m i t o r i q g Svs t u .

M o n i t o r i n g systems continuously observe s y s t e m behavior,

interpret the signals and set off alarms w h e n intervention i s

required. T h e k e y requirements for m o n i t o r i n g systems are

similar to those o f diagnostic systems with the additional

requirement that the recognition of a l a r m conditions be carried

out in real time. F o r credibility, these s y s t e m should avoid

false alarms. Many computer-aided monitoring systems exist in

nuclear power plants, air traffic control, disease, regulatory,

a n d fiscal management tasks.

An exaxpple of this type of system i s VM (Ventilator

Monitor), w h i c h monitors a patient using a m e c h a n i c a l breathing

device af.ter surgery [Fagan, 8 0 1 .

16

2.1.2.7 Debupplnn * S v s t e m s

Debugging systems prescribe remedies for malfunctions,

i.e., they create specifications or reconmendations for

correcting a diagnosed problem. T h e key requirements are similar

to that of planning, design, and prediction systems.

C o m p u t e r aided debugging systems exist for computer

programming in the f o r m of an intelligent knowledge base and text

editors, but none qualify as a n knowledge-based system.

2.1.2.8 -air Svstems
.

R e p a i r systems create plans (o r reconmendations) and

execute those plans to correct some diagnosed problem. T h e

requirements for these systems are similar to those of debugging

and planning systems.

Computer-based repair systems exist in automotive, network,

avionic, and computer maintenance. Construction of KBSs of this

t y p e has just begun.

2.1.2.9 Jn s t r u c t i o n a l Svstems

T h e computer-aided instruction systems (or, simply,

instruction systems) diagnose and debug student behaviors and

p l a n a tutorial interaction intended to convey the remedial

knowledge to the student. Because these systems incorporate

diagnosis and debugging subsystems, the requirements for

instructional systems are similar to those of diagnosis and

17

debugging systems. They include electronic trouble shooting,

medical diagnosis, teaching, mathematics, and coaching a game.

An example of this system i s SOPHIE, w h i c h teaches

problem-solving skills in the context of a simulated electronic

laboratory. SOPHIE allows the student to have a one-to-one

relationship with a computer-based "expert" w h o helps him come u p

w i t h his own ideas, experiment with those ideas, and w h e n

necessary, debug them.

2.1.2.10 h t r o l S v s t m

.
An expert control s y s t e m adaptively governs the overal.1

behavior o f a system w h i c h include interpreting, predicting,

repairing, and monitoring s y s t e m behaviors. T h e requirements o f

these systems include those of interpretation, prediction,

repairing, a n d monitoring systems. T h i s category includes air

traffic control, business management, battle management, and

m i s s i o n control.

KBSs a r e just entering this field.

Svstems 2.1.2.11 h o w l e d g _ e k a u i s i t u . . .

T h e s e systems assist in the construction of large knowledge

bases and refinement of existing knowledge by helping transfer

expertise f r o m the human expert to the knowledge base. T h e k e y

requirements o f these systems include organization o f knowledge

into meta-level knowledge w h i c h helps in the t a s k of assembling

and m a i n t a i n i n g large amounts of knowledge and in providing a

18

natural language interface. This category includes maintaining

large medica-1 knowledge bases and geological knowledge bases.

An example of this type is TEIRESIAS [Davis & Lenat, 821, a

s y s t e m w h i c h m a k e s possible the interactive transfer o f expertise

f r o m a human expert to the knowledge base of a h i g h performance

program, in a dialog conducted in a restricted subset of natural

1 anguage .

2.1.2.12 E x p e r t S v s t e m lCPPstruct i o n Svstems

T h i s type o f system provides general-purpose programning

systems t o build expert systems. T h e key requirements include
.

provision for knowledge representation techniques a n d intelligent

editing facilities. This category includes m e d i c a l consultation

systems a n d electronic s y s t e m diagnosis systems.

An example of this type is ROSIE [Fain, et a l , 811, w h i c h

provides a general-purpose programning system for building expert

system. T h i s s y s t e m also has very sophisticated editing

facilities w h i c h check syntax and semantics of the input.

2.1.2.13 Imape Underst- - S v s t e m s

T h e s e -systems attempt to identify and c l a s s i f y instances of

m o d e l e d objects and, at the same time, extract three-dimensional

information f r o m a m o n o c u l a r image concerning the shape,

structure, a n d three-dimensional location and orientation of the

objects. T h e k e y requirements f o r this type of system are

similar to interpretation, prediction, modeling, a n d description

19

systems. This category inc lude s aerial photography

interpretation and views of automated assembly work-stations.

An example of this type i s the VISIONS system, w h i c h has

been tested w i t h outdoor scenes [Cohen & Feigenbaum, 821.

i o n Svstems 2.1.2.14 ICQI1ceDt - Fornaat

C u r r e n t l y only one system of this type exists: AM. AM

m o d e l s one aspect of elementary mathematics research: developing

new concepts under the guidance of a large body of heuristic

rules [D a v i s & Lenat, 821.
.

2.1.3 h w l e d z e & D a t a

T h e concept of knowledge i t s e l f i s not simple, in the s e n s e

that i t can b e rigorously defined or bounded, nor i t c an b e

divorced f r o m the m e a n s of acquiring or using i t . The latter i s

equally true w h e t h e r w e are speaking of human or computer based

knowledge-based systems. H o w e v e r , some s i m p l e observations c a n

b e m a d e about knowledge and data.

W i d e r h o l d [Widerhold. 8 4 1 observes that:

-
(1) Knowledge considers general aspects of data.

(2) Knowledge i s significantly smaller than data.

(3) Knowledge does not vary rapidly (compared to data)

T h e following simple examples illustrate the difference

between knowledge and data [Widerhold, 841:

20

Mr. Lee's age is 43 years - Data

M i d d l e y a g e is 35-50 - Knowledge

People of middle-age are careful - Knowledge

Mr. L e e h a s never h a d a traffic accident - D a t a

2.1.4 K n o w l e d g k anb Skill

Webster's dictionary defines skill a s "the ability to use

one's knowledge effectively and readily in execution or

performance". Skills refer to organized m o d e s o f operation and

generalized techniques for dealing w i t h problems. T h e problems

may be of s u c h nature that little o r n o specialized and technical

information, thus n o special knowledge, is required. O t h e r

problems may require specialized and technical information at a

r a t h e r h i g h level s u c h that specific knowledge is required in

dealing with the p r o b l e m [Barnett & Bernstein, 7 7 1 .

T h e m a i n characteristic of a skilled performance include

great speed, o r other efficiencies, reduced error, reduced

cognitive load (attentional requirements) and increased

adaptability and robustness [Hayes-Roth, et al, 831.

T h e difference between expert and novice - experts solve

c o m p l e x problems considerably faster and w i t h less errors than

n o v i c e s - are comnonplace w i t h i n everyday experience. During the

past decade, substantial progress has been m a d e in exploring and

2 1

explaining the human information processes that underlie expert

performance % -

The major components of a n expert’s skill (expertise) w h i c h

separates the expert f r o m the novice are: perceptual knowledge,

recognition capabilities, and the w a y in w h i c h information is

represented in long-term memory.

An expert knows a great m a n y things and c a n rapidly evoke

particular items relevant to the problem at hand. Although a

sizable body of knowledge i s prerequisite to expert skill, that

knowledge m u s t be indexed by a large numbers of patterns that, on

recognition, guide the expert in a fraction of a second t o
.

relevant parts of the knowledge store.

H u m a n m e m o r y consists of a complex organization of nodes

connected by links called “ l i s t structures”. H u m a n long-term

m e m o r y can be represented formally by such node-link structures

and almost all computer simulations of c o g n i t i o n use list

structures together with productions that act on these l i s t

s t r u c t u r e s as their fundamental m e a n s for r e p r e s e n t i n g memory.

T h e s e formalisms capture the associative properties of long-term

m e m o r y . An excellent discussion o n expert and n o v i c e (o n which

the d i s c u s s i D n above w a s based) can be found in [Larkin, e t al,

801.

2 . 1 . 6 K B S s a n h E z i s v s t e m s

KBSs co n t a i n large amounts of varied knowledge, which they

22

use during a p r o b l e m solving activity. Expert systems (ESs) are

a species o f - K B S s , - w h i c h use large amounts of knowledge and whose

performance is equivalent to that of a n expert in a given domain.

Expert performance means, for example, the level o f very

experienced engineering o r scientific tasks, o r very experienced

PrD diagnosing and recomnending therapy. T h e ES acts as a n

intelligent assistant to a human expert.

A s y s t e m that c a n understand images, or understand speech,

may rely on a large knowledge base to achieve its perceptions,

but i t d o e s not require any human expertise. For instance,

normal h u m a n beings are born with eyes, ears, and the equipment

behind t h e m to process the signals those organs receive, and they

quickly acquire the knowledge needed to understand the signals.

But normal humans are not born to knowing, f o r example, h o w to

diagnose a disease: that takes expertise, learned over a long

period.

.

T h i s report will not rely upon the formal distinction

between KBSs and ESs. but will rather use the terms a s though

they w e r e synonymous, a n d , in fact, in m o s t o f the literature

these terms a r e used interchangeably.

23

2.2 A w e t i c a l KBS

T h e following is a brief description and example of a

simple, hypothetical KBS application that illustrates most o f the

capabilities o f a KBS. This example and description is based on

[Barnett & Bernstein, 771.

T h e hypothetical s y s t e m is a n automotivt! service consultant

w h o s e primary purpose i s t o h e l p ensure the best service at the

least cost f o r automobiles brought to a service agency. Based on

the d i s c u s s i o n in S e c t i o n 2.1.2, this KBS falls into the category

o f repair systems and all repair systems will als o have diagnosis
.

subsystems.

T h e p r o b l e m d o m a i n for this KBS is w e l l bounded and w e l l

defined. H e n c e reasoning skills required by such a KBS are

relatively simple. T h e knowledge required, however, i s large

because of the number and variety o f automotive subsystems

involved and the h i g h degree of their interdependence. In

addition, the system also contains a data base. The data base of

the s y s t e m w o u l d contain a description o f each car serviced at

the agency. T h e descrption w o u l d contain the configuration of

the vehicle’s-engine, running gear, and optional and special

equipment a s well as the year of m a n u f a c t u r e , m o d e l , color,

service history, etc.

Like all KBSs, this hypothetical automotive consultant

s y s t e m contains two k i n d s of knowledge:

2 4

(1) G e n e r i c knowledge about the m a j o r elements of the

vehicle (such as i t s cooling, ignition, and fuel

sys t ems 1.

(2) Knowledge about the m o d e l and its specific options.

T h e intent of the system i s to recomnend:

(1) The least expensive tests that will produce the

greatest amount of specific information about the

cause of the problem. .

(2) T h e least expensive repairs for the problem.

(3) The best post-repair testing to verify that the

p r o b l e m i s solved.

T h e following i s a hypothetical scenario of such a s y s t e m in

operation. T h e users are the service representative and the

mechanic(s) performing the t e s t and repair w o r k . T h e user

language is a stylized English designed to convey a m a x i m u m

amount of information between the user and the s y s t e m with a

m i n i m u m amouht of effort.
-

Svstem: Tuesday, May 3, 1977, 0 8 : 3 2 : 4 4

S e r v i c e m: Next customer

2s

S v s t a : - Enter owper's name or vehicle ID number

S e r v i c e n: 1743 HBAQ 8197

Svstem: O w n e r i s S.B. Franklin, car is 1974 Ford G r a n

Torino 4-dr sedan w i t h 351-2V engine, A/C, PIS,

P/B and CA smog controls. Last service - April

4 , 1977 a t 28,412 mi R&R w a t e r pump and lower

radiator hose, what i s present m i leage?

S e r v i c e w: 29285
i'

Svstbm: Please inform owner that the following regular

maintenance services a r e due:

C h a nge o i l and filter - l a s t changed on J a n 13,

1977 at 2 4 , 8 4 2 mi.

M a y w e b e o f other service?

Service -: Battery not keeping charge, barely able to

start c a r this a.m.

Svstem: Any other symptoms or problems?

-
Service-: No

Ssstem: C h e c k b e l t tension o n alternator - m o s t likely

cause.

Service rep: Why?

auudm: - Last service required removal o f f a n and belts,

- very likely that tension w a s not properly set

on reinstallation.

Service ~ _ k e : M o r e (meaning m o r e things to be checked or

tested)

Sastem: C h e c k fluid level in battery - next most likely

cause - overcharged battery. If level is low,

check alternator output and voltage regulator.

S e r v i c e -: Replace battery?

Svstem: No, battery is 6 m o n t h s old and should take

recharge.

Service -: T h a n k you. (Signal to s y s t e m that session is

ended for now)

Svstem: C a r assigned number 287 in control system.

First test to be performed by J.K. Uzzi in Bay

1 7 .

After the car is m o v e d to the mechanic’s work area and the

prescribed tests are performed, the following interchange
-

takes place between the mechanic and the system:

JKU 17, 287 (indicating m e c h a n i c , bay and car

being serviced)

Sastem: 1974 G r a n T o r i n o , test results please.

27

Belt tension OK, battery level OK, charge low,

alternator, VR output OK. Pr o b l e m not found.

Svstem: Test for above-normal current f l o w with

ignition off. (Mechanic attaches m e t e r and

takes reading 1 .

chanic : Reading above normal.

Svstem: C h e c k for faulty switch in hood light, trunk
- x light, and courtesy lights.

M e c h a n i c finds faulty switch in trunk light s u c h that light

never turns off.

1c: Fault trunk light switch R&R. Current reading

normal. Thank You.

Ssstem: Y o u are welcome. Bye.

Some o f the salient features of this hypothetical KBS are:

(1) S 2 p a r a t i o n of generic knowledge f r o m specific

knowledge.

(2) T h e dialog between the s y s t e m and the user (mechanic

or service representative) has the flavor o f

naturalness.

28

(3) Expertise.

For a s y s t e m to have suggested checking the belt tension of

the alternator, i t w o u l d have to k n o w that the earlier removal of

the belt could be related to the present problem, that the

severity of the p r o b l e m w o u l d depend on h o w poorly the tension

w a s adjusted, and that the one m o n t h and about 900 mi l e s before

appearance of symptoms (battery failure) i s not unreasonable.

Since i t is a highly probable cause and the easiest to t e s t , i t

ranks as the first suggestion. By requesting m o r e information,

the service representative c a n t e l l the owner w h a t else may be
r t

required and w h a t will not likely be required such as a n e w

battery.

Figure 2 - 1 , based o n [Barnett & Bernstein, 771 and

[Hayes-Roth, e t al, 831, shows a n idealized representation of an

KBS. A KBS i s composed of four components (o r modules):

(1) A K n o w l e d g e Base

(2) &-Inference Engine

(3) An Interface

(4) A W o r k s p a c e

T h e knowledge base contains the knowledge sources (rules

2 9

and information about the current problem, etc.) and fact f i l e s .

T h e - inference engine (also called cognitive engine)

performs the system’s p r o b l e m solving (inference-making o r

reasoning) operations. I t contains procedures that manipulate

knowledge contained in the knowledge base.

T h e interface provides problem-oriented, interactive

comnunications between the user and the KBS. This interaction

is usually in some restricted variant of English and in some

cases via m e a n s of a graphics or intelligent editor.

A wo r k s p a c e (also called blackboard) records intermediate

hypotheses, decisions, and results that a KBS manipulates during
c l

a problem-solving activity.

The knowledge base (K B) of a KBS contains knowledge sources

(KSs) and fact files.

2.4.1 m w l e d u S o u r c e s

A knowledge source cont ins rules, tipulations of the

existence or-non-existence of certain things, simple equivalence

relationships, relationships between the concrete and abstract,

knowledge of conventions about the domain, m e t h o d s of the domain,

etc. In other w o r d s , the breadth of knowledge acquired by one

w h o has become expert in solving problems in the d o m a i n f o r w h i c h

the KBS is designed [Barnett & Bernstein, 771.

30

H

c
A

1

I
V

I

3 1

In a KBS, it is logical to separate knowledge into different

knowledge sources because :

(1) In a n y p r o b l e m domain, each expert acquires different

problem-solving knowledge and there is no efficient

single m e t h o d for representing all of the knowledge.

(2) In a n y problem-solving activity, two types (o r levels)

o f knowledge is involved: problem-specific knowledge

a n d h o w to use this knowledge. T h e latter is usually

called "meta knowledge". - L

2.4.2 F a c t Files

Fact files c o n t a i n "hard" data such a s v a l u e s , attributes,

etc. (for example, the contents of a n engineering handbook) and,

in this sense, i t i s equivalent to a data base. Fact files are

required for the complete solution of a problem. A collection of

fact files w i t h o u t a knowledge source i s not a knowledge base. A

MIS constructed f r o m a conventional data m a n a g e m e n t s y s t e m is not

a KBS [Barnett & Bernstein, 7 7 1 , because i t does not have

reasoning or inferencing capability.
-

E v e n t h o u g h K B S s w e r e and are being developed for a variety

32

of applications (see Section 2.1.2, "Types of KBSs"), the

knowledge in-KSs in those systems generally falls into the

following five types [Barnett & Bernstein, 7 7 1 :

-

(1) M e t h o d s specifying cause-effect relationships,

implications, or inferences depending on the richness

of the relationship to b e represented. Production

rules, predicate calculus expressions, and other

logical m e t h o d s w e r e used f o r representation of this

type. Diagnosis systems typically use this type of

knowledge. For example, MYCIN uses simple IF-"X&

f o r m of rules.

(2) P l a n s of a c t i o n for h o w one w o u l d achieve a n end

result in the w o r l d external t o the m o d e l that the

s y s t e m represents. For instance, in a robotic system

a procedure m a y describe h o w to assemble parts of a n

automobile engine or, simply, h o w to put a block on

top of another.

M o d e l s of agent behavior to infer the effects of the

planning agent activities are used for representation

of- this type. Planning systems typically use this

type of knowledge.

NOAH, a robot planning s y s t e m is an example of this

type and is described in [Sacerdoti, 7 5 1 .

3 3

(3) Declaratives that identify objects within the modeled

d o m a i n - and distinguish them f r o m objects that are not

within the domain. These declaratives may describe

properties of objects, relationships among objects,

definitions of terms or constructs, schemata that

identify the legal relationships or transformations

applicable to the domain.

Semantic networks are used for representation o f this

type of knowledge. Interpretation and diagnostic

systems typically employ this type of knowledge.

F o r example, CADUCEUS consists o f a n extremely l a r g y

semantic network of relationships (approximately

100,000 associations) between diseases and symptoms in

internal medicine [Pople, 8 1 1 .

(4) M e t a properties, w h i c h are a higher level of

abstraction about the d o m a i n and the solution space

and methods. M e t a properties (o r m e t a knowledge)

provide m e a n s for determining and assuring the

consistency, coherency, and reliability o f

intermediate results and steps as w e l l a s the final

sb-lution and answers.

P r o d u c t i o n rules o f the IF-THEN type use this type of

knowledge as w e l l a s knowledge acquisition systems.

An example of latter type is TEIRESIAS. TEIRESIAS

uses m e t a knowledge to transfer expertise f r o m a human

34

expert to the knowledge base of a high-performance

p r o g r a m (MYCIN) in a dialog conducted in a restricted

subset of English [Davis & Lenat, 8 2 1 .

(5) A d v i c e (sometimes called heuristics) that i s similar

to m e t a properties in intent, but that does not carry

the same strength of influence. T h i s is the "soft"

knowledge that experts acquire f r o m experience in

w o r k i n g in the domain and i s rarely contained in

textbooks and papers [Barnett & Bernstein, 771.

T h e techniques used to construct these types of knowledge

a r e discussed in C h a p t e r 3, "Techniques U s e d to Construct KBSs".

2 . 5 Inference Ennine.

The inference engine (I E) provides central control of the

KBS and thus affects both the performance and power of the

system. T h e functions of a n IE can be broadly d i v i d e d into three

categories: knowledge use and control knowledge acquisition, and

expl ana t ion ._.

An IE performs the system's p r o b l e m solving operations.

This includes inference m a k i n g or reasoning, and searching. An

35

IE contains procedures that combine and organize (i.e.,

manipulate),-the contents of a knowledge base. T h u s , a n IE acts

as a m a n a g e r of a knowledge base.

A small portion of knowledge in a KBS usually resides in the

IE (f o r reasons of efficiency). The knowledge contained in the

IE may be general knowledge or m e t a knowledge (knowledge about a

k n o w l e d g e base).

. . . 2 . 5 . 2 ILpowledne A c a u i s i t i ~

A n o t h e r f u n c t i o n of the IE is to provide the mechanisms that

facilitate the acquisition of n e w knowledge, the m o d i f i c a t i o n or

refinement of existing knowledge, and deleting erroneous or

u s e l e s s knowledge, and maintaining consistent representation -

all of w h i c h are done in cooperation w i t h the expert.

2.5.3 h ~ l a n a t i o n

Another important function o f the IE i s t o provide an

e x p l a n a t i o n for i t s actions and i t s reasoning process w i t h

respect to an interaction w i t h the user o r to a solution i t

produces. In- g e n e r a l , i t answers questions about w h y some

c o n c l u s i o n w a s reached or w h y some alternative w a s rejected.

T h i s explanation capability of the IE depends on the contents of

the KB, information about the current problem, and prior

interactions with the user.

The explanation of the IE is related only to its past

36

activity; t h e system cannot explain h o w i t m i g h t deal with a

h y p o t h e t i c a l - c a s e o r h o w i t will continue in solving a present

p r o b l e m [Barnett & Bernstein, 771.

A KBS's ability to solve a particular problem depends on:

(1) How m a n y paths there are to a solution.

(2) T h e ability o f the IE to reduce the number to a

mi n imum.

(3) T h e knowledge in the KB.

(4) W h a t information is available within the p r o b l e m

statement.

T h e r e f o r e , although the IE i s in comnand and acts as the

driving element, the p a t h to a solution, and the criteria for

w h e n to accept a solution or abort a particular path are highly

dependent on the content of the KB and the p r o b l e m data. That i s

w h y r e s e a r c h e r s have found that "amassing a large amount of data

rather t h a n sophisticated reasoning techniques is responsible for

the power of the system" [Gevarter, 8 3 1 .

2.6 Interface

T h e interface i s the conmunication port between the system

a n d the outside world. B a s e d o n the functions provided, the

interface of a KBS c a n be viewed as three different interfaces:

37

user interface, knowledge acquisition (expert) interface, and

data interface. E a c h one is discussed in the following

sub-sections.

2.6.1 U s e r J I

T h e user interface provides the necessary facilities for the

user as a p o s e r of problems and consumer of results (answers and

justifications or explanations). T h e user interacts with the

interface in a jargon specific to the domain o f the KBS and

usually in some restricted variant of English (and sometimes v i a

m e a n s of a graphics o r intelligent editor). T h u s , the user

interface a c t s as a language processor. Typically, the language

processor parses and interprets user questions, comnands, and

volunteered information. Conversely, the language processor

formats information generated by the system, including answers t o

questions, explanations and justifications for it’s behavior, a n d

requests f o r data.

Existing KBSs generally employ natural language parsers

w r i t t e n in INTERLISP to interpret user inputs, and use less

sophisticated techniques exploiting canned text to generate

m e s s a g e s to the user [Hayes-Roth, et al, 831.

The knowledge acquisition (KA) interface (also known a s

3 8

expert interface) is used by a d o m a i n expert (who has gained some

feeling f o r - t h e system) as the provider of knowledge for the KSs.

As s o c i a t e d with the KA interface i s some m e a n s of verifying the

incoming knowledge, sometimes limited to syntax checking, but

often including tests for coherence and consistency with prior

knowledge both in the KSs and the IE.

T h e knowledge acquisition process is discussed in m o r e

detail in Section 3.5.4, "Knowledge Acquisition Process".

2.6.3 D a t a Interface

T h e data interface i s similar to that o f m o s t other

interactive computer systems in that i t incorporates:

(1) Facilities for user input of parameters, data, and

responses to the system's queries.

(2) T h e m e c h a n i s m for locating and accessing files or data

bases.

Many o f the functions necessary to provide the data

interface may be drawn directly f r o m the computer system

environment within w h i c h the KBS functions.

2.7 W O ~ S D ~ C ~ D D r e s e n t a t i m

W o r k s p a c e (also k n o w n as ”blackboard”) records intermediate

hypotheses, decisions, and results that a KBS manipulates during

a problem-solving activity, i.e., i t i s the encapsulation of the

system’s current state in a problem solving activity. I t

includes plan, agenda, history, and solution set.

2.7.1 Plan

A plan describes the overall o r general attack the s y s t e m

will pursue against the current problem, including current plans,

goals, p r o b l e m states, and contexts.

2.7.2 A g e n d a

An agenda is a list o f activities that c a n be done next

w h i c h generally correspond t o knowledge base rules that are

relevant to some decision t a k e n previously.

2.7.3 fList0i-X

H i s t o r y records w h a t has been done (and why) to bring the

s y s t e m to its current state, w h i c h is used to provide

explanations.

40

2.7.4 m u t ion skt

A solution s e t represents the candidate hypotheses and

decisions the s y s t e m has generated thus far, along w i t h the

dependencies that relate decisions to one another.

2 . 8 S e o a r a t ion nf I(Bs Cixnxumm

T h e separation of the elements of a KBS i s a necessary

c o n d i t i o n for including a s y s t e m in that category, s i n c e i t

p ermits the changing o f the domain of application by extending-,

expanding, or substituting another KB independently of the

inference engine [Barnett & Bernstein, 771.

Several researchers have illustrated the generality of their

systems by showing that they can be applied to another domain

m e r e l y by removing the rules for a given domain (i.e., knowledge

base) and substituting rules for the n e w one [Van M e l l e , 791,

[Goldberg & W e i s s , 801.

For example EMYCIN is the inference engine of MYCIN, to

w h i c h several different knowledge bases have been experimentally

a t t a c h e d for solving different classes of problems.

Every d o m a i n , however, has i t s own peculiarities. Despite

the good intentions of s y s t e m builders, these peculiarities

inevitably influence the d e s i g n of a system. As a result, a

s e r i o u s attempt to build a KBS almost always changes in all parts

of the s y s t e m [Duda & Gashing, 8 1 1 . Recognizing this, many

41

researchers have recently begun developing tools or languages for

constructing- KBSs. T h e y are discussed in C h a p t e r 4, “KBS

Building T o o l s and Languages”.

2 . 9

In sunmarg, to qualify as a KBS, a system m u s t [Barnett &

Bernstein, 771 :

(1) Be externally invoked by an expert i n the domain of

applicability.

(2) H a v e a n identifiable IE that reasons plausibly using

the KB and w h o s e solution path is controlled by the

content of the KB and problem data.

(3) H a v e the potential for explaining i t s behavior.

(4) H a v e a n identifiable KB that contains expert

domain-specific knowledge (this is t h e most critical

aspect of a U S) .

(5) Be organized and structured s o that i t s KB can be

eipanded and extended and the system’s performance

improved.

Chapter 3

TECHNIQUES USED TO CONSTRUCI' KBSs

3.1 J n t r o d u c t i o Q

S i n c e the mid-60's, there has b e e n a m a j o r shift in AI

research. T h e shift w a s f r o m a search f o r broad, general laws of

thinking toward a n appreciation o f specific knowledge - facts.,
experiential knowledge, and h o w to use knowledge - as the central
issues in intelligent behavior [F e i g e n b a u m & M c C o r d u c k , 831. A

direct result o f this shift (called "applied AI") is construction

o f KBSs o r expert systems. T h u s , AI techniques are w i d e l y used

in KBS construction. In addition to AI, several other computer

science areas have developed techniques that are used in the

construction of KBSs. A sumnary of contributors and techniques

i s s h o w n in Table 3-1.

F o r example, language processing techniques - specifically,

parsing a n d understanding, question and response generation,

knowledge representation and acquisition - are used f o r the

interface component of KBSs.

4 2

_ - Table 3-1 ORIGINS OF KBS TECHNIQUES
(Based on [Barnett & Bernstein, 7 7 1)

ARTIFICIAL IHTELLIGENCE (AI)

Heuristic Search
Inference and Deduction
Pattern Matching
Knowledge Representation and Acquisition
System Organization

LANGUAGE PROCESSING

Parsing and Understanding
Question and Response Generation
Knowledge Representation and Acquisition

THEORY OF P R O G W N G LANGUAGES

Formal Theory of Computational Power
Control Structures
Data Structures
System Organization
Parsing

MlDELING AND SIhaTLATION

Representation of Knowledge
Control Structures
Calculation of Approximations

DATA BASE MANAGEMENT

Information Retrieval
Updating
File Organization

SOnWARE- ENGINEERING

System Organization
Doc m e n t a t i on
I t e r a t i v e System Development

APPLICATION AREAS

43

Doma i xi- Spe c i f i c A1 go r i t h m s
Human Engineering

44

Similarly, data base management techniques - specifically,

information-retrieval, updating, file organization - are used for

the knowledge base component o f KBSs.

Figure 3-1 (a modification of [Barnett & Bernstein, 7 7 1 p.

4.3) illustrates the relationships between choices and

restrictions in building KBSs. T h e left hand side (lhs) of the

dotted line in Figure 3-1 shows domain specific items (or

choices) and the right hand side (rhs) shows available techniques

(o r restrictions).

F o r example, in any problem domain, the expert’s available

knowledge m o d e l necessarily limits (or restricts) the choices for

representing knowledge in a KB. Similarly, the expert’s

reasoning principles and methods directly affect (or restrict)

m e t h o d s that c a n be used to build a n IE in a KBS.

Likewise u s e r expectations d i c t a t e (or at least influence)

e x p l a n ation facilities.

Figure 3-1 also illustrates another interesting point:

relative impo-rtance of choices in a KBS. According to Barnett &

B e r n s t e i n [Barnett & Bernstein, 7 7 1 , domain considerations are

m o s t important followed by choices of KB representation.

Everything else is of less importance. W h e t h e r this is a fact or

a practice is not certain. H o w e v e r , m a n y existing KBSs co n f i r m

this v i e w [Hayes-Roth, et al, 8 3 1 .

4 5

BPERT'S

I
DOMAIN I
SPECIFIC I ' AVA I LABE
I TEMS 1 TECHN I CUES

I

I

WORKSPACE
REPRESENTATION

1 MODEL 1 j 1 REPRESETION 1 - i r

h

EXPERT'S
REASON I NG

I PRINCIPLES I I I ENGINE I
I
3 INFERENCE

- I -

I '
a .

USER
EXPECTATIONS

FIGURE 3-1, RESTRIC TIONS ON CHOICES OF KBS MFMDOLOGIES
BASED ON [BARNETT 8 BERSTEIN, '771

, EXPLANATION
I

I SYSTEM a
* I

46

3.1.3 m w l e d a U n r e s e n t a t iQn P_roblems

In contrast to conventional data base systems, KBSs require

a knowledge base with diverse kinds o f knowledge - knowledge

about objects, about processes, and hard-to-represent conxnon

sense knowledge about goals, motivation, causality, time,

actions, etc. Attempts to represent this breadth of knowledge

raise many questions [McCalla, 8 3 1 :

(1) H o w d o w e structure the explicit knowledge i n a

k n o w 1 edge ba s e?

(2) H o w d o we encode rules for manipulating a knowledge

base’s explicit knowledge to infer knowledge contained

implicitly within the knowledge base?

(3) W h e n d o w e undertake and h o w do w e control such

inferences?

(4) H o w d o w e formally specify the semantics of a

k n o w l e d g e base?

(5) H9w d o w e deal w i t h incomplete knowledge?

(6) H o w d o we extract the knowledge of a n expert to

initially ”stock” the knowledge base?

47

(7) How do w e automatically acquire n e w knowledge as time

goes on so that the knowledge base c a n be kept

current?

In Section 3.2, some knowledge representation techniques are

discussed, w h i c h answer some of the abovementioned problems.

3.1.4 I (M w l e u B e D r e s e n t a t i o ~ * E m n &

Knowledge o f a domain takes m a n y forms through a KBS (Figure

3-2). A domain expert acquires knowledge through textbooks,

journals, experience, etc. The expert’s knowledge (or expertise)

will be transformed to a knowledge acquisition (KA) facility in

external form. The KA facility transforms the external

representation into physical f o r m (data structures, etc.) and

stored in a knowledge base. T h i s process i s t e r m e d knowledge

acquisition. I t involves p r o b l e m definition, implementation,

refinement, and representation of facts and relations acquired

f r o m a n expert. T h e KA process is discussed in detail in Section

3 . 5 . 4 .

W h e n an- inference engine accesses the KB, the logical f o r m

(usually in the f o r m o f questions) is used at the interface. For

example, during a problem solving activity, the IE could a s k the

K B w h e t h e r a particular hypothesis is true o r not.

F r o m the IE, knowledge is transformed to advice or

explanation w h e n it reaches the user interface.

4 8

-- - - - - _ _ - - - - -
KNOWlEDGE ACWISITION PROCESS

FIGURE 3-2, WOWj&DGE R R FP E N T A TIOFI FORMS

BASED ON [BARNET 8 BERNSTEIN, '771

49

Finally, knowledge is transformed back into external form

(in stylized- English) to the user.

Figure 3-2 sumnarizes the transformations of knowledge

representations throughout a KBS.

3.1.5 BeDresentat i o n Unit

S e l e c t i o n of a representation scheme for building a KBS i s

influenced by answers to questions of following type [Barr &

Feigenbaum, 8 1 1 :

(1) In w h a t detail are objects and events of the external

w o r l d represented in a system?

(2) A n d h o w m u c h o f this detail is actually needed by the

reasoning m e c h a n i s m (or IE)?

T h e answer to these questions depends o n the size of a

knowledge c h u n k (also called g r a i n size). A knowledge chunk is

described as ”a primitive unit in the knowledge representation,

i.e., in a KB that contains the definitions of several

interrelated terms, the definition of a single t e r m i s a ’chunk”’

[Barnett & Bernstein, 771.

F o r example, inMYCIN, each rule o f the type shown b e l o w is

considered as a m o d u l a r c h u n k of knowledge.

5 0

IF

1) T h e infection i s primary bacteremia, and

2) T h e site of the culture is o n e of the
sterilesites, and

3) T h e suspected portal of entry of the organism is
the gastrointestinal tract

THEN

T h e r e is suggestive evidence (. 7) that the identity o f
the o r g a n i s m is bacteriods.

T h e r e i s n o formal metric to define the "right" chunk size,

yet i t is a important consideration to KBS technology for three

reasons:

(1) I t determines the level at w h ~ c h the expert c a n

instruct the system. If the correct chunk size i s

c h o s e n , the expert could add and m o d i f y the knowledge

base in a natural way. If, o n the other hand, the

chunk s i z e i s too big or too s m a l l , the expert is

f o r c e d into a n unnatural m o d e o f expressing his

knowledge.

(2) I t influences the capability of a n explanation

facility, and user acceptance o f a KBS, in part,

depends o n i t s e x p l a n a t i o n facility.

(3) It determines the kinds and efficiency of reasoning

techniques to be used in the KBS. Larger chunk sizes

5 1

generally permit shorter lines o f reasoning. For that

reason, they are m o r e likely to lead to a correct

conclusion w h e n inexact but plausible inference

techniques are used [Barnett & Bernstein 7 7 1 .

- .

.Factors . . . 3.1.6 C r e d i b i l i t v

Expert systems are built to deal w i t h real w o r l d problems in

which reasoning i s o f t e n judgemental and inexact o r uncertain,

i.e., axiomatic knowledge i s not always available. There are two

reasons f o r uncertainty :

(1) T h e expert w h o helps build the KBS m a y not be

absolutely certain about a particular aspect o f the

p r o b l e m domain.

(2) U s e r m a y not be able to provide the necessary input

data to the s y s t e m o r i t m a y not b e possible to obtain

data within the time and other constraints.

In t h e former case, experts rate knowledge chunks as to

their credibility o r uncertainty w h e n they enter them into the

KB . In the latter case, relevant hypotheses o r rules are

combined with each other and with problem-specific parameters.

T h e inference engine has the m a j o r responsibility in both cases.

52

C o n s i d e r the following rule in MYCIN:

IF

1) T h e infection is primary-bacteremia, and

2) T h e site of the culture is one o f the
sterilesites, and the

3) T h e suspected portal of entry of the o r gan i s the
gastro-intestinal tract,

THEN

T h e r e i s suggestive evidence (. 7) that the identity of
the organism i s bacteroids.

T h e numbers used to indicate the strength of the rule (for

example. . 7 above) are called credibility factors (certainty

factors, CFs, in MYCIN terminology).

T h e interpretation of CFs in the above example is that the

evidence is strongly suggestive, (. 7 out of 1) but not absolutely

certain.

MYCIN evaluates its rules in three steps [Nau, 8 3 1 :

(1) T h e CF of a c o n j u n c tion of several facts i s taken to

b e the minimum of the CFs of the individual facts.

(2) T h e CF for the conclusion produced by a rule is the CF

of its premise multiplied by the CF o f the rule.

(3) T h e CF for a fact produced as the conclusion of one o r

m o r e rules i s the maximum of the C F s produced by t h e

rules yielding that conclusion.

53

The following illustrates the above process.

Suppose MYCIN is trying to establish fact F1 and the only

rules concluding anything about F1 are :

IF C1 and C2 and C3 THEN conclude F1 (CF = - 6)

IF C4 and CS THEN conclude F1 (CF = . 8)

Further suppose that conditions Ct, C2, C 3 , C 4 , and CS are

k n o w n w i t h CFs .4, .8, .6, .7, .9, respectively. T h e n the

following c o m p u t a t i o n produces a CF o f .56 for F1.

IF C1 and C2 an d C3,
THEN F1 (CF = . 6)

CF(C1) = . 4 I
CF(C2) = . 8 I -)
CF(C3) = . 6 I

IF C4 and C5.
F1 (CF = . 8)

I I
I I
I I
I -) . 6 x .4 = .24 I

min = .4 I I
I I

I
I I
I I
I - > . 8 x . 7 = . 5 6 I
I I

min = .7 I I

I - > -X = . 56

I n the a b o v e example, w e assumed that the conditions C 1 , C2,

C3, C4, and C5 w e r e established by other rules.

T h e r e a r e at least three other m e a n i n g s or interpretations

o f credibility factors [Barnett & Bernstein, 7 7 1 :

: the fraction of the time the chunk i s (1) A P r o b a b i l i t v . .

true.

54

(2) Belev-: w h a t is the probability that use of this

c h u n k will ultimately lead to a completed chain of

reasoning that solves the problem at hand?

: is this a preferred m e t h o d o r fact to (3) A c c e p t a b i l i t v . .

w o r k e r s in the field?

Because the mathematics for combining and evaluating each of

the four interpretations i s different, there should be a n

agreement between the knowledge engineer (who builds the KBS) and

the expert (who instructs the system) a s to the kind of

credibility factors to be used.

A different approach, called "fuzzy logic", in dealing w i t h

uncertainity is described in [Zadeh, 7 5 1 .

3.1.7 P r o c e d u r a l Y e r s u L Declarative R e D r e s e n t a t i u

In the area of AI, there had been a "battle" between

proponents of procedural representation o f knowledge

(proceduralists) and advocates of declarative representation of

knowledge (declarativists) m u c h similar to the battle in the area

o f computer i-rchitecture between stack architecture advocates and

register architecture advocates.

In the case of AI, at least, the issue is dissolved, rather

t h a n being resolved and one may argue that (1) there is n o

strictly formal difference in the power o f the two - they are

b o t h "universal" - and that (2) both are necessary [Barr &

F e i g e n b a u m , - 8 1 1 . T h e m a j o r issue is management of complexity.

KBSs s e e m to have done w e l l in this aspect by selecting n a r r o w

and specific p r o b l e m domains.

Declarativists argue that, using reasonably modular and

independent knowledge chunks that are combined by a general

purpose reasoning mechanism, a system can produce results that

c a n be used for m u l t i p l e purposes. T h e other qualities of

declarative representation claimed by declarativists are:

flexibility, economy, completeness, certainty, and modifiability.

Proceduralists, o n the other hand, argue that some humah

knowledge (or intelligent behavior):

(1) S e e m s inherently non-modular.

(2) I s difficult to express a s independent rules o r facts.

(3) H a s the ability to apply specialized rules to exploit

situation-dependent relationships among knowledge

chunks.

H e n c e a proceduralist believes that m a n y ad hoc

interrelationships should be m a d e explicit and that procedures

are the best w a y to d o this [Barnett 8z Bernstein, 7 7 1 . The other

qualities claimed by proceduralists are: directness, ease o f

coding, and understandab lity of the reasoning process itself.

56

The following example illustrates some of the issues

invo lved .

A declarative representation of the statement, "All computer

science (C M P S) m a j o r s at USL are smart" could be

For all I, [USLStudent(x) & CMPSMajor(x) -- ' Smart(x)]

A simple reasoning m e c h a n i s m could use this single statement

for m a n y purposes. For instance, to answer the question, "Is Lin

smart?", i t w o u l d check to see whether L i n i s a USL student and a

(XIPS M a j o r . T h e answer i s "yes". The s a m e statement (or fact)

could be used to infer that "Joe i s not a W S Major" given the

fact that "Joe i s a stupid student". This example illustrates

that a n explicit representation of knowledge or a fact can be

used for m u l t i p l e purposes.

I n a strictly procedural representation, the statement needs

to be represented differently for each usage. E a c h w o u l d demand

a specific f o r m o f the type " I f y o u find a USL student, check to

see w h e t h e r he/she i s a M S M a j o r , and if s o , assert heishe is

clever".

An example to illustrate the advantages o f procedural

representation i s provided below. T h e example i s taken f r o m

[Kuipers, 7 5 1 .

C o n s i d e r a robot w h i c h manipulates a simple w o r l d such as a

table top of toy blocks. T h i s can be done most naturally by

describing i t s m a n i p u l a t i o n s as programs. The knowledge about

57

building stacks is in the form of a program to do it. Since we

specify in detail just what part will be called when, we are free

to build in assumptions about how different facts interrelate.

For example, we know that calling a program to lift a block

will not cause any changes in the relative positions of other

blocks (making the assumption that we will only call the lift

program for unencumbered blocks). In a declarative

representation, this fact must be stated in the form something

equivalent to

" I f you lift a block X, and block Y i s on block 2 before you
start, and if X is not Y and X is not 2 and X i;
unencumbered, then Y is on 2 when you are done".

This fact must be used each time we ask about Y and 2 in

order to check that the relation still holds. This knowledge is

taken care o f "automatically" in the procedural representation

because w e have control over when particular knowledge will be

used, and deal explicitly with the interactions between the

different operations.

3 . 2 . 1 Jntroductioq

"Knowledge differs from information in that i t i s a property

of the knower, interpreted by him through an internal

58

representation system, preparing him for action" [Kochen, 7 4 1 .

This -highlights the importance o f efficient m o d e s of

representation. T h e underlying p r o b l e m of understanding

knowledge is the q u e s t i o n of h o w to represent large amounts of

..

knowledge in a fashion that permits their effective use and not

that o f finding some powerful techniques of implementing

intelligent systems [Goldstein, 7 7 1 .

T h e two major approaches are:

(1) Power-based strategy.

(2) Knowledge-based strategy.

In the first approach, we try to increase the computational

power of the m a c h i n e to be able to perform a n efficient search

a n d m a t c h i n g process. M a n y researchers have realized that this

i s not a constructive idea a s these methods get overwhelmed by

combinatorial explosion.

Instead, i t w o u l d be useful to find better w a y s to express,

recognize and use various forms of knowledge. A person i s termed

s u p erior in intelligence because o f his efficient and structured

form o f representing knowledge and associating i t w i t h different

situations rather than the crude power called "thinking".

H a v i n g realized the importance of knowledge representation

f o r efficient KBSs, w e have to choose a n appropriate form.

5 9

Different m e t h o d s of representing knowledge are:

1. F i n i t e state machines.

2. Programs.

3. Predicate calculus.

4. P r o d u c t i o n rules.

5. Semantic networks.

6. Frames.

F e i g e n b a u m [Feigenbaum. 8 1 1 has very beautifully stated that

an encyclopedia cannot be termed knowledgeable (or containing

k n o w l e d g e) unless one knows h o w to extract useful information ou't

o f i t . T h e above m e n t i o n e d methods are supposed to achieve the

same goal. T h e intelligence of any KBS will depend o n h o w

efficiently these methods will help programs to extract and

interpret knowledge contained in the knowledge base. T h e

representations a r e broadly classified into

(1) Declarative

(2) Procedural

T h e n a m e s themselves suggest their m e a n i n g (see Section

3 . 1 . 7) . In t-he first one, w e "declare" bits o f knowledge w h i c h

will be u s e d by the s y s t e m to "deduce" c e r t a i n results. I t i s

h i g h l y m e c h a n i c a l and helps to derive concrete results. Its m a i n

disadvantage is that i t m a y get drowned in a combinatorial

explosion created by itself. T h e other m e t h o d involves

procedures f o r accomplishing certain tasks. T h u s , depending on

6 0

the set of rules followed, certain conclusions c a n be derived

f r o m the procedures. The problem lies in the fact that the

procedures m i g h t be unable to conclude for many instances.

T h u s , if w e could overcome the limitation of declarative

m e t h o d s by combining t h e m with procedural m e t h o d s , it might be

possible to evolve a m o r e efficient method o f knowledge

representation. This w a y we could have the advantage of ease in

m o d i f i c a t i o n provided by declarative representation along with

the directedness o f procedural representation.

I t h a s b e e n v ery rightly said by Newell [Newell, 821 that,

Representation - Knowledge + Access.

T h i s m e a n s that w e should represent knowledge s u c h that w e

have a s y s t e m to provide access to i t , s u c h that i t helps us to

select a certain action for reaching our goal. T h e

representation i s the structure w h i c h realizes knowledge and

reduces i t t o the next lower level.

At times, i t has b e e n found advantageous to combine

knowledge representations of different types [Aikins, 831. I t

should a l s o be possible to use the s a m e k n o w l e d g e base for

m u l t i p l e uses. T h u s , the topic of knowledge representation

demands thorough understanding for developing efficient

intelligent systems.

Knowledge representation forms the heart of KBSs (or Expert

Systems). The strength of the s y s t e m lies in the d e p t h as well

as the breadth of knowledge represented in the system. Thus, i t

6 1

is q u i t e desirable at the time of designing a n e w system t o

decide on -the knowledge representation technique to be adopted.

There are a f e w generalized techniques of knowledge

representation w h i c h could be used. Many systems designers

prefer to d e s i g n their o w n knowledge representation technique

w h i c h m i g h t be a slight modification of one of the m a j o r

representation techniques.

It is virtually impossible to get information on all the

knowledge representation techniques. As quite a f e w o f them are

application dependent, they m a y not be useful to other systems.

T h u s , this discussion will concentrate on a f e w g e n eralizeh

knowledge representation techniques. W h e r e v e r possible, examples

are provided to help the reader in understanding these

techniques.

A c c o r d i n g to F e i g e n b a u m [Feigenbaum, 8 1 1 , at present, there

is no theory of knowledge representation. We are also not in a

position to prove that one system represents human m e m o r y better

than a n y other. T h e objective of this section i s to highlight

why c e r t a i n systems work efficiently f o r c e r t a i n knowledge

representations.

- . . - 3.2.2 b i t e State

3.2.2.1 Int roduc t ion

A finite state m a c h i n e (FSM) i s a k n o w l e d g e representation

technique o f procedural type.

62

The FW, as t h e name s u g g e s t s , i s d C O l l e C t i O n o f a f i n i t o

n u m b e r o+ states. E a c h s t a t e s p e c i f i e s a c t i o n s (o r c o m p u t a t i o n s)

t h a t rhoula bo takm t o r e a c h t h e n e x t s t a t e . T h e r e are two

s p e c i a l s t a t e s i n a FSM. A s t a r t s t a t e is t h e i n i t i a l s t a t e a n d

a n e n d s t a t e i s w h e r e a c t i o n or c o m p u t a t i o n t e r m i n a t e s .

FSMs are w i d e l y u s e d i n p l a n n i n g s t r a t e g i e s , i n d e s i g n i n g

d i g i t a l e l e c t r i c a l c i r c u i t s (a d d e r s , f l i p - Q l o p s , m u l t i p l i e r s ,

e t c . 1, a n d t o r e p r e s e n t grammars [Woods, 731.

3. 2. 2. 2 E x a m n l e t

A s i m p l e example o f a f i n i t e s t a t e m a c h i n e i s a l a m p w i t h . a

p u l l - c h a i n (F i g u r e 3-3). F u l l i n g t h e c h a i n t u r n s t h e l i g h t o n i f

i t i s o f f a n d o f f i f i t i s o n .

F i g u r e 3-3. F i n i t e S t a t e M a c h i n e R e p r e s e n t a t i o n
o f a Lamp w i t h a P u l l C h a i n .

63

Figure 3-3 i s a state-transition d i a g r a m of a pull-chain

lamp. C i r c l e s represent states. Transitions are represented by

a r c s (or arrows). T h e actions (or inputs) are represented o n the

arcs and reactions (o r outputs) are on the right side o f the

input separated with a slash. State S 1 is the "lights on" state

a n d , by pulling the chain, a transition i s m a d e to state S2,

"lights off". Likewise, f r o m state S2 ("off"), by pulling the

chain, transition i s m a d e to state S 1 ("on").

T h e power, size, and reversibility (the ability to reach a n

initial state f r o m a final state) o f a FSM depend on the

following f o u r issues [Barnett & Bernstein, 7 7 1 :

(1) T h e set of allowable computations in a state.

(2) T h e set of decision rules (or predicates) that take a

FSM f r o m one state to another state.

(3 1 P a r a m e t e r i z a t i on.

(4) T h e control mechanism.

3 . 2 . 2 . 3 -2

T h e F i g u r e 3-4 illustrates some o f the issues involved in a

finite state-&chine representation of knowledge. T h e circles

represent states. Arrows (or a r c s) represent transitions.

A c t i o n s are represented inside the circles. D e c i s i o n rules o r

predicates a r e represented o n the arcs. D e c i s i o n rules m u s t be

satisfied in o r d e r to go f r o m one state to another.

6 4

READY LIGHT OFF

DARKNESS COFFEE

THIRSTY

DR INK
ANOTHER

LAZY/ TURN
SATI SF I ED MR, 'I

COFFEE END

LAZY/
SATI SF I ED 'I

FIGURE 3-4, FINITF STATE REPRESENTATION OF A PIAN

TO M4K F AND DRINK COFFFF USING I t It MR, C O F F E

65

F o r example, in Figure 3-4, the state m a r k e d "Wait" has two arcs

leaving it.- O n e i s labeled "Ready Light Off". FSMwill be in

this W a i t " state - then a FSM is said to be blocked - until the

ready light turns on. W h e n this happens, the FSM goes to its

next state, "Drink a Cup" in our example.

W e c a n a l s o use parameters in a FSM. In o u r example, the

number o f table spoons o f coffee that are to be used in filling

the filter is passed as a n argument (NIMBER) on the arcs leaving

the state "Fill Filter with Coffee".

3.2.2.4 Control M e c h a n i s m

T h e power of a FSM, a s mentioned earlier, a l s o depends on

i t s c o n t r o l mechanism. There are two types of control:

deterministic and non-deterministic.

. .
(a) R e t e r m n i s t i c

I n a deterministic F W , one a r c predicate controls the

t r a n s i tion f r o m one state to another. This is accomplished

either by requiring that at m o s t one arc predicate be true, or by

having a rule that selects one arc out of the set that qualifies.

In our example, the state "Drink Another Cup" has three arcs

leaving i t : "Thirsty", "Empty", and "Satisfied". O n e cannot

d r i n k coffee f r o m a n empty MR. COFFEE even if he is thirsty. So

there should be a selection rule w h i c h gives priority for the arc

"Empty".

66

. . (b) Non - D e t e m i s t i c

In a n6n-deterministic FSM, i t is possible for several

different arcs leaving the same state to be satisfied

simultaneously. T h u s , in a non-deterministic FSM, the next state

is not completely determined by the current state and i t s input.

Instead. a set of next possible states i s to be determined. If

any a r c reaches the end state, the FSMwi11 terminate normally.

An example w h i c h illustrates the differences between

deterministic FSM and non-deterministic FSM is presented below.

F i g u r e 3-5 shows both a deterministic and non-deterministi?

FSM that recongnize symbol strings that start w i t h one or m o r e

"01" and ends w i t h two consecutive 1 s and does not contain two

consecutive Os.

In F i g u r e 3-5 circles represent states a n d the letters

inside the circles represent the state names. T h u s "A" is the

start state and "E" i s the final state. A r c s represent state

transitions and s y m b o l s o n the arc represent the inputs (the

symbol that is scanned) that cause those transitions.

6 7

Ai D E E RMI N I ST IC

0

B, NON DETERMINISTIC

I NG FINITE STATE RECOGNIZERS FOR {0,1}* END

WITH 2 CONSFCUT IVE IS A ND DOE S NOT CONTAIN
FIGURE 3-5,

C0NSES;UT I VE OS,

6 8

Supposk the input string is "010111". Starting in the state

"A", the successive states into w h i c h i t is thereafter driven are . '

(in order) B, C, B, C, E, E. Since E is the final state, the

deterministic FSM correctly recognizes the input string "010111".

If the input i s "10011", beginning in state "A", the successive

states into w h i c h i t is thereafter driven are (in order) C, B, D,

D, D. Since D i s not a final state, the deterministic FSM

(correctly) fails to recognize "10011".

* E a 4 . . . (b) -

A g a i n suppose the input string i s "010111". Starting in the

state "A". one possible sequence of states into w h i c h i t c a n be

t h e reafter d r i v e n are (in order) B, E, B, E, E, E. Since E i s

the final state, i t correctly recognizes the input string

"010111". An o t h e r possible sequence o f states is B, E, E, E, E,

E, w h i c h correctly recognizes the input string.

Now suppose the input is "10011". Starting f r o m state A,

one possible sequence of states i t thereafter d r i v e n i s E, E, E,

E, E. Si n c e E is a final state, the non-deterministic FSM

Another incorrectly -'recognizes the input string "10011".

possible sequence of states i s E, B, D, D. Since D i s not a

f i n al state, the non-deterministic FSM (correctly) does not

recognize the input string.

In the above example, the deterministic FSM has one m o r e

6 9

state than the non-deterministic FSM. There are some cases w h e r e

this factor- makes a critical difference in implementing

non-deterministic control over deterministic control. However,

interpretation of a non-deterministic FSM (by a n inference engine

in a a s) is m o r e complex.

This section on FSM i s concluded by discussing the desirable

and undesirable characteristics of a FSM. T h e discussion i s

based on [Barnett & Bernstein, 7 7 3 .

3.2.2.5 B a r a c t eris t i c s pf ESM

T h e desirable characteristics are:

(1) T h e ability to easily implement nondeterministic

control.

(2) T h e ability to represent and model plans o f action for

w h i c h "procedural" execution inside a computer is

meaningless.

(3) Reversibility, i.e., a n F S M m a y be examined to answer

s u c h questions a s w h a t needs to occur to a l l o w i t to

e n d u p in a particular state.

(4) N e w plans of action m a y be constructed dynamically

because a n FSM representation i s e a s i l y manipulated.

(5) Many disciplines, both scientific a n d nonscientific,

represent part of their published expert knowledge in

70

a form similar to that of a n FSM.

T h e undesirable characteristics of FSMs are:

(1) T h e loss of efficiency compared to compiled

procedures.

(2) T h e enforcement of low-level uniformity in the

representation, w h i c h c a n m a k e the FSM hard to

understand (in a sense, F W are better at

representing strategies than tactics).

(3) The external format of a n FSM representation c a n lose

clarity unless there is a graphic m e d i u m available for

computer input and display.

3.2.3 Using UL bowled!! e

3.2.3.1

Procedural knowledge c a n b e represented by programs. Figure

3-6 depicts a p r o g r a m representation of knowledge necessary to

adjust the volume o f a stereo set. The example has two

arguments : a human agent w h o will per f o r m the task, and the

desired volume of the stereo set. M u c h w o r l d knowledge (comnon

sense knowledge) is embedded in this program. F o r example,

7 1

(1) Stereos are in houses, cars, etc.

(2) Y o u need to be close to the stereo to control the

volume

(3) Turning the knob clockwise increases the volume

(rightmost - highest or loudest) and turning counter

clockwise reduces the volume (leftmost - lowest) and

volume can be adjusted by adjusting the knob.

(4) Before the volume can be adjusted, the stereo set m u s t

be switched on.

(5) Relative values of loudness s u c h as high, low, m e d i u m ,

etc. are used and compared.

B e s i d e s this w o r l d knowledge, the p r o g r a m contains knowledge

about itself - for example,

(1) The p r o g r a m w i l l not go into a n infinite loop w h i l e

trying to adjust the volume, because only approximate

equality i s necessary to terminate.

(2) P r o g r a m '"E'' will effectively m o v e the agent to the

desired location, room, in our example.

(3) Program "ROTATE-KNOB" expects the agent to be in

proximity of the stereo set.

7 2

ADJUST-=-STEREO (AGENT human, DESIRED-VOLIME volume)

WVE AGENT, "room");
J.E DESIRED-VOLW = "High" or "Loud"

ELSE Knob-direction c - "Left";
R O T A T E B B (AGENT, "Right", "Full-turn");
IE Knob-direction = "Left"
mIxL;

x c - "Half-turn";

Knob-direction c - "Right";

Y H L U (CURRENT-VOLUVE DESIRED-VOLZME) MT
LE CURRENT-VOLIME DESIRED-VOLUbdE
THEN ROTATEXNOB (AGENT, "Left", x);
ELSE ROTATEBB (AGENT, "Right", x) ;
x < - x/2;

/ * WILE * / ;
/ * THEN * / ;

/ * ADJUST-THE-STEREO * / ;

Figure 3-6. Procedural Knowledge Example

The advantage o f the program representation is that all of

the knowledge is represented in a natural manner. The

disadvantages become apparent i f one tries to extend this example

to stereo s e t s where sliding a indicator u p and down adjusts the

volume.

When programs are used to represent knowledge, two options

are available : invocation methods and control structures.

73

3.2.3.2 lnyocat iM M S X h i L

T h e f o u r m e t h o d s of program invocation are: direct,

procedural attachment, demon, and pattern directed.

(a) Direct

Direct invocation occurs w h e n the user (using program) knows

precisely w h i c h p r o g r a m i s to be used and some identification

(for example, name) i s used to reference that p r o g r a m through a

m e c h a n i s m such a s a subroutine call.

T h e basic concept of procedural attachment (PA) i s that m o s t

knowledge should be expressed declaratively (as d a t a structures

or items) and should permit optional association of programs w i t h

the knowledge chunks and/or the data i t e m s w i t h i n the chunks.

W h e n e v e r these knowledge chunks are referenced, the program(s1

associated w i t h t h e m will be executed. T h e invoker of the

programmay be unaware both w h a t p r o g r a m i s invoked and w h a t

functions the invoked program i s to perform. U s u a l l y , only the

p r o g r a m that m a k e s the attachment has that knowledge.

A d e m o n i s like a n interrupt handler in a n operating system.

T h e y perform no action unless and until a specific situation i s

encountered. T h e y a l l o w knowledge that pertains to highly

7 4

specialized or unusual situations to be left out of the m a i n

stream, m a k i n g programs m o r e readable and easier to organize.

(d) P a t t e r n - Directed

In a s y s t e m using the pattern directed (also known a s

goal-directed) m e t h o d , each program i s n a m e d by a pattern that

describes the kind of tasks i t performs.

An example of a p a t t e r n for the “MIVE” goal (Figure 3-6) is

m V E (h u m a n , object). T h i s states that the program c a n plan the

sequence o f actions necessary to m o v e a human into proximity to

a n object. A n o t h e r p r o g r a m in the same s y s t e m could have a
pattern such as MDVE(object1, object2). To m o v e either object1

o r object2, a n external agent may be required. T h u s , the second

program performs a different task f r o m that of the first program.

3.2.3.3 G n t r o l Structures

Control structures in programs c a n be sequential or parallel

or non-deterministic.

(a) S e a u e n t i a l

In a s-equential m e t h o d , the p r o g r a m itself explicitly m a k e s

the choice o f w h a t to d o next.

(b) P a r a l l e l

In a parallel m e t h o d , m a n y subprograms c a n operate

7 5

simultaneously a n d programs themselves are responsible f o r

synchronizat-ion mechanisms.

. . (c) N o n - D e t e m n i s t i c

I n a non-deterministic method, each program, when operating,

will have the same environment, and many branches will be

followed during execution.

3.2.3.4 A d v a n t a P e S & D i s a d v a n t a u

S e e Sect ion 3.1.7, ”Procedural vs. Declarative

Representation”

3.2.4 P r e d i c a t e Calculus

3.2.4.1 Introduction

T h e predicate calculus is a formal notation system (i.e.,

formal language) that c a n be used to represent knowledge in A I

systems.

In the next section, a predicate calculus definition is

presented. In Section 3.2.4.4, a n example to illustrate the

concepts is presented and in S e c t i o n 3.2.4.6, the advantages and

disadvantages of using predicate calculus to represent knowledge

in AI systems will be discussed. T h e definition and discussion

of the predicate calculus are based on a n excellent book by

N i l s s o n [Nilsson, 7 1 1 , and [Barnett & Bernstein, 771 (p . 76-88).

7 6

. . .
3.2.4.2 Pr e d i c a t e Calculus D e f l n l t i u

T h e r e are three parts to the definition of PC.

(a) Syntax specification - the gramnar that defines legal

expressions in the language.

(b) Semantic specification - the rules that relate the

symbols in the language to objects in the domain.

(c) Legal operations - rules of inference that create

legal expressions f r o m other legal expressions.

T h e syntactically legal expressions in the predicate

calculus are called W e l l - F o r m e d Formulae” (WFF). Th r o u g h the

semantic specification rules, a WFF m a k e s a n assertion about the

domain. The WFF are said to have the value T or F, depending on

w h e t h e r the assertions are true o r false on the domain. T h e

legal operations are constrained in such a w a y that the value (T

o r F) of a WFF output by a transformation can be directly

determined f r o m the values of the WFFs input to the

t r a n s format i on.

The syntax specification of the first-order predicate

calculus (higher orders will be discussed later) has two parts:

7 7

(1) T h e specification of a n alphabet o f symbols.

(2) The m e t h o d by w h i c h legal expressions are constructed

f r o m these symbols.

T h e alphabet consists of the following set o f symbols:

(1) Punctuation marks: , 0

(2) Logical symbols: - = > v

(3) Quantifier symbols: V 3 (The symbol Y, is called the

universal m a n t i f i e r and is read farall; the s y m b o l 3 . .

. . is called the existential m i e r and i s read a s

n
(4) n-adic function letters: f (i) (i 1, n ’= 0)

0
(The f (i) are called constant letters.

n
(5) n-adic predicate letters: p (i) (i > = 1 , n ’ = 0)

0
(The p (i) are called proposition letters.)

(6) Variables: x(i)

From these symbols, the definition of a WFF c a n b e

recursively expressed:

1. T e r m s

a. E a c h constant letter i s a term.

b. E a c h variable letter is a term.

7 8

n
c . If f (i) is a function letter and t(1) t(2) ..

n
t(n) (n > = 1) are terms, then f (i) (t(l), t(2), . .

. . t(n)) is a term.

d. No other expressions are terms.

2. Atomic formulae (Doma i n- s p e c i f i c Boolean-valued

expressions)

a. The propositional letters are atomic formulae.
n

b. If t(1) t(2) . . t(n) (n 1) are terms and p (i)

is a predicate letter, the expression

p (i) (t(I), t(2) . . t(n)) i s an atomic formula.
n

c . No other expression is an atomic formula.

3 . WFFs

a. An atomic formula is a WFF.

b . If A and B are WFFs, then so are

i (- A) (Read as not A)

i i (A 5) B) (Read as A implies B)

i i i (A V B) (Read A or B (or both))

iv (A B) (Read as A and B)

c . If A is a WFF and x is a variable, then the

following are WFFs:

i (V x)A (Read as for all x, A)

i i (3 x) A (Read as, there exists x such that A)

d. No other expressions are WFF.

7 9

T h e parentheses shown in 3 b and 3c are usually omitted where

n o c o n f u s i o n will result. Some of WFFs, using abbreviated

notation, are:

S o m e examples o f expressions that are not WFFs are:

(b) S e m a n t i c s

T h e semantic specification rules f o r the predicate calculus

give a ”meaning” to the WFFs by m a k i n g a correspondance between

symbols in the calculus and objects in the domain. T h e domain,

D, is a nonempty s e t of objects. T h e n e c e s s a r y correspondances

are [Barnett & Bernstein, 7 7 1 :

(1) A s s o c i a t e d with every constant symbol in the WFF is

some particular element of D.

(2) Associated with every function letter in the WFF is a n

n-adic function over (and into) D.

..

(3) Associated with every predicate letter in the WFF is

8 0

some particular n-place relation among the elements of

D-. (A relation may be considered a s a f u n c t i o n w h o s e

only values are T and F.)

T h e specification of domain and the above semantic

associations constitute a n interpretation or a m o d e l of the WFFs.

G i v e n a WFF and a n interpretation, w e c a n assign a value, T or F .

to e a c h atomic formula in the WFF. These values c a n be used in

turn t o a s s i g n a value, T or F, to the entire WFF. T h e process

by w h i c h a value is assigned to a n atomic formula is

straightforward: If the terms of the predicate letter correspond

to elements of D that satisfy the associated relation, the value

of the atomic formula is T; otherwise, the value i s F. For

example, consider the atomic formula:

P(a, f(b,c))

a n d the interpretation

D is the set of integers

a is the integer 2

b is the integer 4

c is the integer 6

f is the (two-argument) addition function

P is the relation greater-than

With this interpretation, the above atomic formula asserts

8 1

that "2 i s g r e a t e r than the s u m of 4 and 6". In this case, the

assertion is- f a l s e and P(a, f(b,c)) has the value F. If the

interpretation is changed so that a i s the integer 1 1 , then the

value i s T.
. .

T h e m e t h o d of assigning a value to a n atomic formula

containing variables is not so simple. F o r example, the atomic

formula:

(Vx) P(f(x,a), X I

with the interpretation

D is the set of integers

a is the integer 1

f i s the (two-argument) addition function

P i s the relation greater-than

m a k e s the assertion, "for all x in D (x any integer), x plus one

i s g r e a t e r t h a n x". H e n c e , the atomic formula h a s a value only

under the "influence" of the quantifier. W h e n m o r e than one

quantifier i s used, t h e n the o p e r a t i o n o f e a c h m a y depend upon

those further to the left. Let the interpretation be

D is the set of integers

P is th-e relation greater-than

Then, the WFF,

8 2

asserts that for all x (integer) there exists a y (integer),

w h i c h may _depend upon the chosen x , such that y is greater than

x. T h e value of this WFF is T. Ho w e v e r , the WFF
..

asserts that there exists a y (integer) such that y i s greater

than any (integer) x. T h e value of this WFF i s F.

The values of WFFs composed using logical symbols are

derived by a set of rules that are independent of the

interpretation. If X i s any WFF, then (-XI has the value T w h e n

X has the value F, and (-XI has the value F w h e n X has the value

T. T a b l e 3-2 shows h o w the values of WFFs composed by the other

logical connectives are determined from the values of the WFFs

X(1) and X(2).

G i v e n these definitions of the logical and quantifier

symbols, i t i s easy to s h o w that the symbols V, A , and 3 are

redundant because they c a n be expressed in terms of the symbols

- , = > and

8 3

T a b i e 3-2. DEFINITION OF THE LOGICAL CONNECTIVES

84

. . . 3 . 2 . 4 . 3 Deflnltioru

Several terms are used to describe properties of WFFs and

the calculus itself:

Yalid. A W F F that has the value of T for all interpretations is

called valid.

Decidable. A calculus i s called decidable if there exists a

general method for determining, for any WFF in that calculus,

whether i t is valid.

ecidable. If a calculus is not decidable, then i t is

undecidable.

Satisfx. If the same interpretation makes each WFF in a set of

WFFs have the value T, then this interpretation is said to

satisfy the set o f WFFs.

Unsatisfiable. If no interpretation exists such that each WFF

simultaneously has the value T. then t h e s e t of WFFs is said to

be unsatisfiable.

Prove. To prove W given S means to show that W logically follows

from S.

ProDositiond Calculus. If the use of quantifiers and variables

is prohibited, the result is called the propositional calculus, a

decidable subset of the first-order predicate calculus.

. .

8 5

S e c o n d - o r d m h l c u l u s . A second-order predicate calculus comes

about by allowing quantification of propositional letters in

addition to the quantifications allowed in the first-order

theory.

. .

- er CalcuLyS. T h e second-order calculus c a n be extended

by allowing quantification of the higher-order predicate letters.

S u c h a calculus is called omega ordered predicate calculus.

T h e predicate calculus provides a natural w a y of expressing

declarative knowledge. A knowledge source i s a collection of

WFFs and the semantic rules that relate t h e m to the domain of

application. T h e included WFFs all have the value T and a r e

called axioms. T h e semantic rules are usually straightforward

and implicit, i.e., the abbreviated names used for the f(i) and

p(i) are c h o s e n in such a w a y that the correspondance to the

d o m a i n i s intuitive.

3 . 2 . 4 . 4 &-

T h e following example illustrates m a n y of the concepts

involved in predicate calculus. This example (Figure 3-7) i s

taken f r o m [Klahr, 7 8 1 . T h e r e are four axioms:

(1) J a c k i s the husband of J i l l .

(2) J i l l lives in Boston.

(3) If xl is the husband of x2, then xl and x 2 are married.

(4) A m a r r i e d couple lives in the s a m e place.

86

LIVES. IN(x3, x5)

HUSBAND(Jack,Jill)
I
I u1
V

HUSBAND(xl,x2)=>MARRIED(xl,x2)
I
I u2
V

LIVES.IN(Jill,Boston)
/

/

/ u3
/

/
/
V

/
u4 /

V
LIVES.IN(Jack,Boston)

u1 u2 u4

u1 u2
J i l l - - > x 2 - - > x 4

Variable chains: Jack--,xl--,x3-->Jack

u3 u4
Boston-->xS-->Boston

Theorem: LIVES.IN(Jack,Boston)

Figure 3-7. Proof that J a c k Lives in Boston
[Barnett & Bernstein, 771

8 7

T h e assertion derived is "Jack lives in Boston". T h e proof

is s h o w n schematically with the reasoning chain depicted by the

single arrows. Thus, the proof consists of the above axioms as

steps(1) through (4) followed by:

(5) J a c k is m a r r i e d to J i l l - because of (1) and (3) .

(6) J a c k lives in Boston - because of (21, (4 1 , and (5) .

When passing along the arrows, a n association i s established

between the variables and/or the terms on each side of the arrow.

For example, along the a r r o w labeled U1, xl, and x 2 are

respectively associated with Jack and J i l l , and along the a r r o w

labeled U2, xl, and x 2 are respectively associated with x 3 and

x4. E a c h such association i s called a unification. T h e set o f

all s u c h unifications are sumnarized, under the heading "Variable

chains", at the bottom of the Figure 3-7 T h e r e are three chains

in the example: (Jack xl x 3) . (J i l l x 2 x 4) , and (B o s t o n x5).

T h e chains are formed a s equivalence classes of terms and

variables so that each variable is i n one and only one chain, no

variable in one c h a i n unifies with a variable in another chain,

if the chain contains m o r e than one element then each element

unifies with at least one other element in the chain, and the

n u m b e r of c h a i n s is maximal.

In order to prove a n assertion three rules m u s t be followed:

(1) A t m o s t one t e r m c a n occur in a n equivalence class -

all variables in the class then have this value.

8 8

(2) If no terms occur in a class, t h e n there must exist a n

o-bject in the domain such that all variables in the

c h a i n m a y legally assume that value.

(3) E i t h e r rule (1) o r (2) must apply simultaneously to

every chain.

T h e example shows a m e t h o d of determining a value (in this

case T) of the assertion, "Jack lives in Boston." T h i s raises

t h e natural q u e s t i o n of h o w to deal w i t h the problem, "Where does

J a c k live?" T h e method described in [Nilsson, 7 1 1 for solving

this k i n d o f p r o b l e m i s based o n the resolution technique for

generating proofs in the first-order predicate calculus. T h e

m e t h o d consists o f two parts:

(1) U s e resolution to generate a proof for a related

p r o b l e m - for example, (tfx) LIVES.AT(Jack,x); and

(2) U s e the generated proof to find a n appropriate answer

to the problem - in this case, x = Boston.

3 . 2 . 4 . 5 m r a c t e r i s t ics Q€ P r e d i c a t e Calculus

One o f the features of the predicate calculus is the ability

to derive n e w facts and beliefs using some existing WFFs. T h i s

is a good idea, but i t falls short as a m e a n s o f representing

knowledge in KBSs and other AI applications. O n e of the

difficulties is that i t i s not enough simply to h a v e the "facts

8 9

at hand"; one m u s t k n o w h o w to use them. Consider f o r example,

the inference rule OR-introduction

A =) A V B

OR-introduction captures the idea that we can infer "A or B"

either by proving A or by proving B. G i v e n constants D, E, and

F, we a n use this rule to infer

D V E

D V F

as w e l l as w o n d e r s as

D V D

D V E V E

D V E V D V E

D V E V E V E V E V E

and so o n w i t h o u t limit.

This example (based on [Hayes-Roth, et a l , 8 3 1) shows that

the unguided application of inference rules c a n be explosive.

T h e inferences are perfectly correct; they are just not

particularly interesting. And this contributes to w h a t i s called

combinatorial explosion in large search problems (see Section

3.3.4).

M u c h w o r k has been directed toward controlling combinatorial

explosion. For example, some mechanical theorem-proving

techniques avoid nonsense applications of OR-introduction.

M e t h o d s that use m a n y rules of inference need to incorporate

knowledge to control their use [Hayes-Roth, et al, 8 3 1 . Some

90

alternative but equally troublesome m e t h o d s are suggested (see

[Nilsson, 8 0 1) for example, resolution and resolution strategies.

A n o t h e r characteristic of predicate calculus representations ' '

is demonstrated by example of Figure 3-7 namely, there are two

broad categories of axioms [Barnett & Bernstein, 771:

(1) F i r s t , there are specific facts such as "Jack i s

J i l l ' s husband" o r " J i l l lives in Boston".

(2) Second, there are general assertions such as "Married

couples live at the same place." In any actual

application domain, the number o f facts will be

overwhelming. The result is impractically s l o w proof

procedures or the use of different m e t h o d s , in the

inference engine, to handle facts and general

knowledge. M o r e detailed discussion o n this problem

c a n be found in [Kalhr, 7 8 1 .

3.2.4.6 A d v a n t u aaB Disadvant- nf P r e d i c a t e Calculus

Advantages:

(1) Predicate calculi are the best theoretically

understood and among the oldest techniques used f o r

representing knowledge in a computer.

(2) Predicate calculus is m o d u l a r and reversible.

9 1

Disadvantages:

(1) Representing procedural knowledge in the predicate

calculus i s difficult.

(2) In predicate calculus, the entire set o f axioms must

be consistent. Thus, i t m a k e s i t impossible to

include heuristic and possibly contradictory rules o f

thumb and other sorts o f expert knowledge in the

knowledge base.

3.2.4.7 s m D a t P r e d i c a t e Calculus.

Som e systems that use predicate calculus languages to

represent knowledge:

- QA3 [Green, 691. a general-purpose, question-answering

s y s t e m that solved simple problems in a number o f

domains.

- STRIPS, the Stanford Research Institute P r o b l e m

Solver, is designed to solve planning problems faced

by a r o b o t in rearranging objects and navigating in a

cluttered environment [Fikes, 721.

- FOL [Filman & W e y h r a u c h , 761 i s a very flexible proof

checker f o r proofs stated in first-order predicate

calculus.

9 2

3.2.5.1 I p t r o d u c t i o n

M a n y of t h e highly successful KBSs use production rules as

the representation of knowledge in a knowledge base.

A p L p d u c t i o g r u l e is a specification of conditional action

and consists of a left hand side (LHS) (also called condition or

antecedent), w h i c h describes a situation, and a right hand side

(RHS) (also called action or consequence), which describes

something that m a y legally be done in a situation described by

the LHS [Barnett & Bernstein, 7 7 3 .

For example, in "If you a r e outdoors and it is raining, then

o p e n umbrella", the conditions are (1) being outdoors, and (2)

rain. T h e a c t i o n is to open an umbrella.

3 . 2 . 5 . 2 P r o d u c t i o n Svstem TvDes

There a r e (a t least) three types of application areas w h e r e

p roduction rules are used as a knowledge representation m e c h a n i s m

[Davis & K i n g , 7 7 1 .

(a) & y c h o l o P i c a l W d e l i r l g

T h e attempts to simulate (or mimick) human performance

(behavior) on simple tasks are aimed at c r e a t i o n of programs

w h i c h embody a theory for that behavior. Using a minimum set of

competent production rules, some psychological modeling

93

experiments (EPAM, [Barr & Feigenbaum, 8 1 1 , f o r example) w e r e

able to reproduce the behavior. H e r e the "behavior" i s meant to

include all aspects of human shortcomings or successes w h i c h may

arise out of (and hence m a y be clues to) the "architecture" of

the human cognitive system [Davis & K i n g , 7 7 1 . Some of these

shortcomings like oscillation and forgetting may b e considered as

"mistakes" for a s y s t e m intended f o r h i g h performance, but are

important in a s y s t e m m e a n t to m o d e l human learning behavior

[Feigenbaum, 6 3 1 .

A s y s t e m w i t h the above described behavior is described in

[Newell & S i m o n , 721.

In some formal language theories, production rules have been

used t o w r i t e gramnars for formal languages [Floyd, 6 1 1 , [Evans,

641. T h e important characteristic of these theories is that they

use non-determinism f o r control structure and rule selection.

T h e s e s y s t e m s use production rules as a representation of

knowledge about a task or domain and attempt to build a program

w h i c h displays competent behavior in that domain. In these

(e x p e r t) systems, there i s n o explicit attempt to "simulate" a

specialist's p r o b l e m solving behavior; however, the s y s t e m

derives power f r o m integrating the same heuristic knowledge

94

experts use, with the s a m e informal style of reasoning [Buchanan

& Duda, 8 3 1 . -

. . T h e example and the rest of the discussion in this section

i s oriented towards this category.

3.2.5.3 P r o d u c t i o n Svstem ComDonents

A production system consists of three parts [Barr &

Feigenbaum, 811:

(a) A rule base - a collection of production rules.

(b) A w o r k s p a c e - a buffer like data structure.

(c) An interpreter or control m e c h a n i s m - w h i c h controls

the s y s t e m activity.

(a) P r o d u c t iQn l h b x L

P r o d u c t i o n rules are represented by some agreed upon syntax.

A set of primitives and symbols (that correspond to objects and

functions in the domain) are used to construct LHS and RHS of

production rules.

W o r k s p a c e (sometimes called context, or data base o r short

t e r m m e m o r y (S ' I M) buffer) is the focus of attention of production

rules. I t contains the total description of the system's current

state or situation. The LHS of a rule is m a t c h e d against the

contents of the workspace. If there i s a m a t c h , then RHS i s

95

executed ("fired") and RHS action modifies the workspace. Then a

production rule is said to be u ~ l i e d .

(c) I p t e r o r e t e r (or control mechanism)

In a production system, the interpreter has three tasks:

(1) M a t c h i n g or building a lCPnflict - Set - the set of all

production rules w h o s e LHSs are satisfied. If the

conflict set is empty, then processing i s terminated.

(2) Cnaflict - R e s o l u t i o n - if the conflict set is not

empty, then one m e m b e r o f the conflict set is

se lec ted.

(3) A c t i o n PT E x e c u t i o n - the RHS of the above selected

production rule is executed.

T h e entire cycle i s repeated until the termination condition

i s reached.

3.2.5.4 W l i c t &solution Strate-

Several conflict resolution strategies have been used o r

proposed. A m o n g them are [Barnett & Bernstein, 771:

(a) m o r d e r : T h e r e is a complete ordering of all

production rules. T h e rule in the conflict s e t that

i s highest in ordering is chosen.

(b) Rule-: A precedence network determines a n

ordering .

96

(c) -a1 itv Qrder: T h e m o s t specific rule i s chosen.

(d) D a t a o r d e r : Elements o f the workspace are ordered.

T h e rule chosen i s the one w h o s e LHS references the .'

highest-ranking workspace element(s).

(e) l k g e n c y o r d e r : Execute the rule in the conflict set

that w a s m o s t (least) recently executed, o r the rule

in the conflict set w h o s e LHS references the most

(least) recently referenced element(s1.

. . (f) - : Execute every rule in the conflict

set as if i t w e r e the only m e m b e r . Computation stops

w h e n any path terminates.

3 . 2 . 5 . 5 -1

Th e following example (a slight m o d i f i c a t i o n of [Barr &

F e i g e n b a u m , 8 1 1 page 1911 illustrates some o f the basics of

production system.

Consider a production system (PS) that might be used to

identify a food item, given a f e w hints. by a p r o c e s s similar to

that used in the game T w e n t y Questions. T h e workspace (o r

context) coniains a simple list of symbols, called "context l i s t "

(CL). "On-CL X" m e a n s that the symbol X is currently in the

context. F i g u r e 3-8 shows the rule base and the interpreter f o r

our example production system.

97

PROWCTTIONS:

P1. IF ON-CL green THEN Put-On-CL produce
P2. IF On-CL packed in small container T" Put-On-CL delicacy
P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL

P4. IF On-CL weighs 15 lbs AND On-CL inexpensive AND NOT On-

P5. IF On-CL perishable AND On-CL weighs 15 lbs THEN Put-On-

P6. IF On-CL weighs 15 lbs AND On-CL produce THEN Put-On-CL

perishable

CL perishable THEN Put-On-CL staple

CL t u r k e y

wa t e m e 1 on

INTERPRETER :

1 . Find all productions whose condition parts are TRUE and make
them applicable.

2. If more than one production is applicable, then deactivate any
production whose action adds a duplicate symbol to the CL.

3. Execute the action of the lowest numbered (o r only) applicable
production. If no productions are applicable, then quit.

4 . Reset the applicability o f all productions and return to S 1 .

Figure 3 - 8 . Productions and Interpreter
[Barr & Feigenbaum, 8 1 1

9 8

The condition part of each of the productions corresponds to

a q u e s t i o n _ - one m i g h t ask in the Twenty Questions game. Is the

item green? Does i t come in small container? and so on. The

action parts of the productions represent addition to our

knowledge about the unknown item.

- .

S u p p o s e the original knowledge about the m y s t e r y food item

is that i t is green and weighs 15 l b s . The context l i s t before

the beginning of the first cycle i s

CL = (green, weighs 15 lbs.)

T h e cycle starts with stepl of the interpreter algorithm,

finding all the applicable productions by testing their condition

parts. S i n c e only P1 i s applicable, step2 i s not necessary, and

step3 causes the action part of P1 to be executed. This adds the

symbol -produce" to the context list, representing a n e w fact

about the unknown food item:

CL = (produce, green, w e i g h s 15 lbs.)

S t e p 4 ends the first cycle and b r i n g s us back to stepl -

findin'g all the applicable productions.

In the second cycle, productions Pl, P 3 , and P5 are all

applicable. So in step2, w e must c h e c k if any of these three

adds a duplicate symbol to the context l i s t . P1 adds "produce",

which is a duplication, so i t i s eliminated. Then in step3 w e

select P3 to be executed because i t has a lower number than P6.

Now the CL looks like

9 9

CL = (perishable, produce, green, w e i g h s 15 lbs.)

In the third cycle, P1, P3, and P5 are applicable.

Checking, in step3, for redundant entries, w e eliminate P1 and P3 . .

f r o m consideration. In step3, P5 i s executed and watermelon is

added to the context. T h e resulting CL is

CL = (watermelon, perishable, produce, green, w e i g h s 15 lbs.)

In the last cycle, finding no non-redundant productions to

execute, the interpreter finally quits. T h e system's answer is

w a t e r m e l o n , because i t is the first symbol on the context list.

3.2.5.6 -2

T h e next example is a PS that assists the service

representative and mechanics in a n automobile repair agency (see

S e c t i o n 2.2, "A Hypothetical KBS"). T h e example is based on

[Barnett & Bernstein, 7 7 1 .

A customer comes to the agency and r e p o r t s the problems (and

symptoms) t o the Service Representative (SR). T h e SR enters the

data into the system. T h e s y s t e m diagnoses the problem(s) and

suggests appropriate tests and repairs. T h e m e c h a n i c corrects

the problem.

100

T h e system, as w a s mentioned in Section 2.2, contains

(1) k n o w l e d g e base of production rules that describe

cause-and-effect relationships among the performance

characteristics and measurable attributes of a n

automobile.

(2) A data base of past problems, repairs, and service

performed on the vehicle.

Figure 3-9 shows a sample of production rules for the

s y s t em.

RHS of e a c h production rule has a condition, followed by

decimal n u m b e r w h i c h represents the certainty or probability of

the c o n d i t i o n (see S e c t i o n 3.1.6, "Credibility Factors"). Thus,

rule R1 says that, if the tension of the fan belt is low, then

there are two possible consequences:

(1) T h a t about one-half of the time the output of the

a l t e r n a t o r will b e l ow.

(2) A b o u t one-fifth of the time the engine will overheat.

T h e other rules, R2 - R9, are interpreted in a similar

m a n n e r .

101

R1

R 2

R 3

R 4

R 5

R6

R 7

R8

R 9

I F f a n belt tension is l o w
alternator output will b e l o w [. S I and engine will
overheat 1 - 2 1

I F alternator output i s low
THEN battery charge will be l o w 1 . 7 1

I F battery is l o w
THEN car will be difficult to start [. S I

I F automatic choke malfunctions OR automatic choke

THEN car will be difficult to start 1 - 8 1
needs adjustment

I F battery i s out of w a r ranty
THEN battery charge m a y be l o w [. 9]

I F coolant i s lost OR coolant s y s t e m pressure cannot be

THEN engine will overheat [. 7]
maintained

I F there is a h i g h resistance short AND fuse is not

THEN battery charge will be l o w [. 8]
b l o w n

I F battery fluid is l o w
THEN battery will boil off fluid l . 3 1

I F battery fluid i s l o w
THEN battery charge will be low 1 .41

Figure 3 - 9 . PRODUCI'ION RULES FOR A-IVE SYSTEMICS

102

Figure 3-10 shows a fact file, a collection of "hard data".

T h e i n f o q t i o n included f o r each measure or observation i s the

agent f r o m w h o m to gather data and the relative difficulty (or

cost) o f gathering the data. T h e r e are four possible agents for

gathering:

(1) T h e customer (Cust).

(2) T h e d a t a base.

(3) Inspection by the service representative (SrvR).

(4) M e a s u r e m e n t by the mechanic (Mech).

T h e d i f f i c u l t y information will be combined with the CFs in

the p r o d u c t i o n rules to formulate the most cost-effective and

timely p l a n for the needed diagnostics and repairs.

Now assume that a customer comes to the agency with a vague

complaint that h i s car is hard to start. T h e service

representative enters this information, including appropriate

customer a n d vehicle identification. T h e s y s t e m then g r o w s a

structure similar to that shown in Figure 3-11. T h e boxes are

labeled with observable or measurable symptoms and are connected

by arrows labeled with the names o f the production rule they

represent. To the far right o f each of the unknown value (e.g.,

the box labels, such a s battery fluid level), the associated

agent and relative difficulty are listed.

103

OBSERVATIONS

Alternate Output Level

Battery Charge Level

Battery Fluid Level

Choke Adjustment

Choke Function

Cool ant Leve 1

Coolant System Pressure

Difficulty to Start

Engine Temperature

Fan Belt Tension

Fuse Condition

Short in E l e c t r i c System

Voltage Regulator Level

W a r r ant j e s

AGENT

Mech

Mech

SrvR

Mech

Mech

SrvR

Mech

Cust

Cust

Mech

SrvR

Mech

Mech

D a t a Base

DIFFICULTY

4

3

2

5

5

2

5

1

1

3

2

8

4

0

Figure 3-10. DATA GATHERING PROCEDURE FACI' FILE

104

At this point, the s y s t e m w o u l d check the data base for

information_-about the battery's warranty. I f nothing decisive

w a s found, then the customer w o u l d b e asked w h e t h e r the car w a s

running hot, and the service manager w o u l d continue to m a k e

on-the-spot observations. Diagnostic procedures will then be

placed on a n ordered schedule for the mechanic. The ordering

w o u l d be based upon :

(1) C o s t effectiveness - a function of test difficulties,

estimated probability of being necessary, and ability

to eliminate other tests.

(2) Availability of resources - specialty mechanics and

t e s t equipment.

T h e structure shown in Figure 3-11 w a s g r o w n by a n algorithm

called "back-chaining". A condition - in this case, "difficult

to start" - i s t aken as a given, and the goal of the system i s to

f i n d the cause(s).

T h e back-chaining a l g o r i t h m i s

'(1) F i n d all rules that have the initial or derived

c-onditions as their consequence (in our example, Rule

R3 and R4).

(2) C a l l LHS (antecedents) of these rules - "derived

conditions".

(3) Repeat steps (1) and (2 1 , and terminate w h e n no m o r e

c a n be done.

105

w MALFUNCTION

DIFFICULT
TO START

I I

FUSES NOT u
& I : I f

CHARGE u3w
B A l T E R Y O U T
OF WARRANTY

I I 1 L

VOLTAGE
REGUUTOR

OUTPUT HIGH

I I

L 1 LOW FAN I
BELT TENSION

I
HIGH ENGINE
TEMPERATURE

FIGURE 3,11 PI F FLO W I N AUTO DIAGNOSIJC S Y STFbl

AGENTS

FlECH (5).

MECH(5)

SRVR(2)

DB(O) .

MECH (4)

CUST(1)

106

Figure 3-12 shows the kind of structure grown f o r each kind

of rule formht. In each example in the figure, C1 is the initial

or a derived condition.

Rule El i s the simplest; a1 i s added to the s e t of derived

conditions. Rule E2 states that if a1 is the case, then both C1

and C2 ought to follow. Thus, a1 i s a derived condition, and C2

may or mag not be considered a derived condition depending upon

the particular strategy used by the system.

Rule E 3 can b e written as two rules: "IF a1 THEN cl" and

"IF a1 THEN c2". Therefore, a 1 i s added to the set of derived

conditions, and c 2 part i s ignored.

Rule E4 states that both a1 and a 2 m u s t occur to support the

conclusion, c l . T h e r e f o r e , both are derived conditions. If

either a1 or a 2 i s found to not hold, then t h e search for support

for the other c a n be discontinued.

Rule E5 i s equivalent to the separate rules "IF a1 THEN cl"

and "IF a 2 THEN c2". T h u s , both a1 and a 2 are added to the s e t

of derived conditions.

The example and the discussion i s somewhat simplistic

because there m i g h t be some problems w h i c h w e did not consider.

For example-, suppose that rule R8 (i n Figure 3-9) had been

w r i t t e n m o r e accurately as the two rules:

107

_ - E l IF A 1 THEN C?

E2 IF A 1 THEN C1 AND C2

E3 I F A 1 THEN C1 OR C2

E4 IF A 1 AND A2 THEN C1

E5 IF A 1 OR A2 THEII C1

108

R8(1) IF voltage regulator output is high

THEN the battery will overcharge.

R8(2) IF battery is overcharged

THEN battery will boil off fluid.

With these new rules, a fragment of the structure shown in

Figure 3-11 would be replaced by that shown in Figure 3-13. Now

the interesting conclusion is that a high battery charge implies

a low battery charge. This is an apparent contradiction, since

both conditions cannot hold at the same time. This kind of

situation can often arise in unpredicted ways if the system

contains many rules. The charge of the battery will oscillate

between high and low as the battery fluid is replaced and boils

off, respectively.

S o , in a sense, there is a missing rule of the form that

adding fluid to a battery whose charge and fluid levels are low

will probably allow the battery to return to normal conditions.

However, to handle this kind o f situation in general, i t is

necessary that the control mechanism or inference engine have

some knowledge about how to proceed when faced with apparent

conflicts and contradictions. One advantage of PS is that ad hoc

knowledge may be relatively easily incorporated in the system to

hand 1 e thi s .

109

BAm
CHARGE

Low I-"
fQ R9 9

BATTERY BAm VOCTAGE

UXJ HIGH HIGH
(2) , FLU ID CHARGE REG, WTPUT

A L

FIGURE 3-u, FRAGMENT OF GRAPH STRUCTURF

110

T h i s section discussed some of the k e y features and

characteristics of the production systems. T h e discussion is

based o n [Davis & K i n g , 771 and [Barnett & Bernstein, 771.

..

Figure 3-14 is a sumnary of characteristics and

relationships. E a c h box represents some feature, capability, or

parameter of interest. An a r r o w labeled w i t h "+" means that the

source characteristic enhances the destination characteristic;

the opposite is true for arrows labeled with a "-".

In a production system, individual productions in the rule

base c a n be added, deleted, or changed independently. Eacb

production (or production rule) is a knowledge chunk.

Indirect m t e d I n t e r a c t i o n Channel . . (b)

O n e o f the most fundamental characteristics of a production

s y s t e m is that production rules must interact indirectly through

a single channel (or workspace). Rules are constrained to see

a n d m o d i f y o n l y the workspace. T h e y cannot "call" each other.

T h u s , to pioduce a production s y s t e m w i t h a specified behavior,

one must use a n indirect approach in w h i c h each piece o f code

(i.e., e a c h rule) leaves behind the proper traces (a unique

m e s s a g e) to trigger the next relevant piece.

111

r

VISIBILITY
OF

- 110 I RECT
L I !I I TED 4 - + INTERACTION - CHANNEL BEHAV I OR

>

RULES AS + EXPIANA-
cI PRIMITIVE e TIONS OF

SOLUT I ON ACT IONS

-

-

I

MODULARITY

t

i + +
c .

OF BEHAVIOR

I T t -

- MODIFI- 1 ABILITY
CONFLICT-
RESOLUTION EXTENSI-

+

I I STRATEGY BI LITY

1

FORMAT +
MACH I NE
READ-
ABILITY

I I

r- +

..
I
i

FIGURE 3-14 I CHARACTFR I STI cs OF PRODUCTION SYSTFMS
BASED ON [BARNETT ti BERNSTEIN, ‘771

112

The u n i f o r m access to the channel, along with openness of

production systems (i.e., any rule could possibly be the next to

be selected), implies that those traces (o r m e s s a g e s) must be

constructed in the light of a potential response f r o m any rule in

the system. T h i s becomes m o r e difficult to do as the number of

rules increases and is a method that quickly destroys the major

benefits o f using PSs, such as independence of the knowledge

chunks.

(c) C o n s t r a i n e d Format

T h e syntax of production rules i s traditionally q u i t e

restrictive. T h i s m e a n s that:

(1) T h e LHS should be a simple predicate built out of

B o o l e a n combination o f computationally primitive

operations.

(2) T h e RHS should p e r f o r m conceptually simple operations

on the workspace.

E v e n though some systems a1 l o w programner-supplied

predicates a n d procedures to be invoked by the rule’s LHS and

RHS, some restrictions are obeyed [Davis & K i n g , 771:

(1) As a predicate, the LHS of the rule should return only

some * i n d i c a t i o n of the success or failure o f the

m a t c h .

113

(2) The operation of LHS must only "observe" the

workspace, and not change it in the operation of

testing it .

(3) T h e operation of RHS i s precluded f r o m using m o r e

complex control structures like iteration o r recursion

w i t h i n the the expression itself (such operations can

be constructed f r o m m u l t i p l e rules, however).

These constraints on f o r m make the dissection and

understanding of productions by other parts of the p r o gram a m o r e

straightforward task, strongly enhancing the possibility of

having the program itself read, and/or m o d i f y i t s own procedures.

Expressability suffers, however, since the limited syntax may not

be sufficiently powerful to m a k e expressing each piece of

knowledge a n easy task. This in t u r n , both restricts

extensibility (adding something i s difficult if i t i s hard to

express it), and makes modification of the system's behavior m o r e

difficult. For example, i t might not b e p a r t i c u l a r l y attractive

to implement a desired iteration if i t requires several rules

rather than a line or two of code.

. - . . (d) M a c h i = Readabilitv

Constrained format enhances machine readability and allows

the s y s t e m to examine i t s o w n rules. As one example, i t becomes

possible to implement automatic consistency checking. Another

capability deals w i t h the MYCIN's approach to examining i t s

114

rules. T h i s is used in several w a y s and produces both a m o r e

efficient control structure and precise explanations of system

behavior [Davis, 7 6 1 .

(e) b d u l a r i t v

Since direct interaction among rules i s constrained, i t is

possible to m o d i f y rules, delete rules, and add n e w rules as

necessary because other rules are not directly dependent upon the

rules that are changed o r added.

For systems using the goal-directed (e.g., MYCIN) approach,

rule order is usually unimportant. Insertion of a n e w rule is

thus simple, and can often be totally automated. This i s a

distinct advantage where the rule set is large, and the problems

of system complexity are significant.

. . . (f) b t e n s i b i l i t v

Extensibility i s a corrollary of modularity. T h e ability to

augment the s y s t e m to p e r f o r m in a n e x p a n d e d domain i s obviously

enhanced by the modularity and low interaction among the original

rule s e t . On the otherhand, as w a s m e n t i o n e d above under

"Constrained Format", extensibility m a y be h a m p e red because of

format constraints i f the expanded domain necessiates the use o f

a m o r e robust set of primitives.

114

rules. This i s used in several w a y s and produces both a more

efficient control structure and precise explanations of system

behavior [Davis, 761.

(e) M p d u l a r i t v

Since direct interaction among rules i s constrained, i t is

possible to m o d i f y rules, delete rules, and add n e w rules as

necessary because other rules are n o t directly dependent upon the

rules that a r e changed or added.

For systems using the goal-directed (e . g . , MYCIN) approach,

rule order i s usually unimportant. Insertion of a n e w rule is

thus simple, and can often be totally automated. This i s a

distinct advantage where the rule s e t is large, and the problems

of system complexity are significant.

. . .
(f) Ea&nsibtlity

Extensibility i s a corrollary of modularity. The ability to

augment t h e system to p e r f o r m in a n expanded domain is obviously

enhanced by t h e modularity and l o w interaction among the original

rule set. On the otherhand, as w a s m e n t i o n e d above under

”Constrained Format”, extensibility m a y be hampered because of

format constraints if the expanded domain necessiates the use of

a m o r e robust set of primitives.

115

Visibility o f behavior is the ease w i t h w h i c h the overall

behavior o f a production system c a n be understood, either by

observing the system, o r by reviewing its rule base. E v e n for

conceptually simple tasks, the stepwise behavior of a production

s y s t e m is o f t e n rather opaque. T h e main factor responsible for

this is the reevaluation of the workspace at every cycle.

Because o f these, a n y attempt to "read" a production system

requires keeping in m i n d the entire contents o f the workspace,

a n d scanning the entire rule set at every cycle. Another factor

is the limit on rule-to-rule conmunication w h i c h inhibits the

s y s t e m f r o m focusing attention.

..

One m e t h o d o f increasing goal directed behavior in a

production s y s t e m i s the use o f h i g h level, strategic and

tactical rules to guide the conflict resolution strategy [Davis,

7 6 1 . An interesting discussion relating to this section can be

found in [Englemore & N i i , 771.

nf Wavier (h) M o d i f i a b i l i t v

T h i s is similar to extensibility. H o w e v e r , the issue is the

ability to m o d i f y the rules so that the s y s t e m focuses attention

better or m o r e quickly. This i s a i d e d by m o d u l a r i t y o f the rule

set and hindered by the problems that arise w h e n explicit control

a n d sequencing are desired in a production system.

116

A production s y s t e m can (and usually does) explain and

validate its solutions to problems by displaying the rules i t . '

used t o derive the solutions. Because the rules are o f a

situation/conclusion f o r m and are of reasonable chunk size, all

necessary contextual information c a n be included in the rule

itself. M o d u l a r i t y o f the rules a l s o contributes to the

acceptability of the explanation because each rule i s reasonably

well self-contained.

Conflict resolution strategy has a n effect on the ability to

extend the s y s t e m and/or m o d i f y its behavior. A RHS s c a n w i t h

backward chaining seems to be the easiest to f o l l o w since i t

m i m i c s part o f human reasoning behavior, w h i l e a LHS scan with a

complex conflict resolution strategy m a k e s the s y s t e m generally

m o r e difficult to understand. As a result, predicting and

controlling the effects o f changes in o r additions to, the rule

base are directly influenced in either direction by the choice of

rule selection method.

If the rule set generates inconsistent results, the control

m e c h a n i s m mag fail. M a c h i n e processing and simplicity of format

h e l p implement automatic consistency checking.

117

The best example of a KBS w h i c h uses production systems f o r

r e p r e s e n t i n g - k n o w l e d g e is MYCIN.

3.2.6 -t ic Networks

3.2.6.1 I p t r o d u c t i o n

Semantic networks are used in many areas: psychological

m o d e l i n g o f h u m a n memory, programning languages, natural language

understanding, data base management systems, etc. A n d as such

there is no simple set of unifying principles to apply across all

semantic n e t w o r k systems.

This section presents some general characteristics of

semantic networks and illustrates some basic concepts w i t h a n

example.

. . . 3.2.6.2 D e f l n l t l o p

A m n t i c u t w o r k (or net) consists of nodes and links (o r

arcs) and i s a m e t h o d of representing declarative knowledge. T h e

nodes represent entities or objects, concepts or situations in

the d o m a i n a n d the arcs represent the relations between them.

Semantic networks, because of their inherent generality and

n a t u r a l n e s s , c a n be used to represent highly interrelated

information that cannot be properly represented by, for instance,

standard d a t a (base) management techniques.

118

3.2.6.3 -1

Supposi w e w a n t to represent a simple sentence like "Clyde

is a n elephant" in a semantic network (example is taken f r o m

[Barr & Feigenbaum, 8 1 1) . W e c a n represent this by creating two

n o d e s C l y d e and Elephant and connecting t h e m with a link, as

shown be 1 ow.

- .

T h i s c a n also be written as

ISA(Clyde, Elephant)

I t m e a n s that (Clyde, Elephant) i s a m e m b e r o f the relation

ISA. ISA (also k n o w n as "IS", "SUPERC", "SUPERSET") is

conventionally taken to be the re 1 at i on,

more-specific-example-of. T h u s the above example is the

representation of the fact that C l y d e is a specific example of

Elephant .
Brachman [Brachman, 8 3 1 catalogs m a n y other interpretations

o f ISA and differences between systems that, on the surface,

appear v e r y similar.

119

3 . 2 . 6 . 4 -2

Figure' 3-15 shows another semantic network. In Figure

3 - 1 5 (a) instances of various relations using the relation names

TEMP, LOC, COLOR, SIZE, ISA, and BEIWEEN are shown. T h e meaning

of the relations is as follows:

TEMP(a,b) m e a n s a i s the temperature of b.

LOC(a,b) m e a n s a is located at b.

COLOR(a,b) m e a n s that a is the color of b.

SIZE(a,b) m e a n s a i s the size of b.

BE?WEEN(b,a,c) m e a n s b is between a and c.

120
RELATIONS

TEMP (WARM-BLOODED MAMMAL)
I SA (DOG, MAMMAL) I SA (CAT, MAMMAL)
I SA(F LDO,DOG) I SA(BOWSER , DOG) I SA (PUFF , CAT)

COLOR (TAN, FIDO) COLOR (T A N ~ B O W S E R) COLOR (BLACK, PUFF)

BETWEEN (MARY' S, FIREHOUSE, BOB'S)

LOC(MARY'S, F I D O) LOC (F IREHOUSE, BOWSER) L O C (B 0 B ' S, P U F F)

S I Z E (~ O L B J F I D O) SI Z E (1 4 L B I B O W S E R) S I Z E (4LBJ P U F F) -
MAMMAL

C A T WARM-BLOODED

1 I S A

P U F F F I D O BOWSER

TAN 14LB F I R E H O U S E 4 LB B L A C K BOB
M A R Y ' S ~ O L B
\ ' s

U S O F I N F E R E N C F

ISA(X,Y) A ISA(Y,Z) = > ISA(X,Z)

SIZE(X,Y) A SIZE(U,V) A x<u = > SMALLER(Y,V)

ISA(X,Y) A R(U,Y) = > R(U,X)

FIGURE 3,15 WPLF SFMWTIC NFTWORK

121

T h e knowledge in a semantic net i s g i v e n m e a n ing, as

demonstrated. here, by defining the relation names and other

symbols used in the instances o f relations, in terms of external

entities.
. .

Figure 3-15(b) shows a graph w h i c h represents the same

knowledge that is in the set o f instances s h o w n in Figure

3-15(a). T h e object names are connected by arrows labeled with

appropriate relation names. For example the instance

produces the g r a p h fragment

Representation of g r a p h fragments for other than binary

relations i s more difficult but s t i l l straightforward, for

instance, BE'WEEN in Figure 3-15(b).

T h e internal storage representation of semantic network i s

very similar to the graphical representation shown and is built

using pointers and list structures. T h e explicit connections

among the entities enhances the efficiency of programs that

search through the semantic n e t w o r k [Barnett & Bernstein, 771.

Figure 3-15(c) shows some examples o f inference rules for

the semantic network. T h e format of the rules is w e l l formed

formulae from the predicate calculus (see S e c t i o n 3.2.4).

Inference rules c a n also be represented a s production rules in a

122

production system. Production systems c a n be u s e d t o represent

s o m e procedural knowledge that c a n be used to test for complex

enabling conditions. This m a y be difficult to express as WFFs.

In Figure 3-15(c), variables, w r i t t e n as s m a l l letters, are

a s s u m e d to be universally quantified.

..

T h e first rule says that (f o r all X, Y, and 2) if X i s a Y

a n d Y i s a 2, then X is also a 2. An example o f this i s : PUFF

is a CAT and CAT is a h4AhM.U; therefore, PUFF i s a MIhMAL. Thus

first rule says that ISA i s transitive.

T h e second inference rule says that if Y and V are two

o b j e c t s that “have” SIZE, and the size of Y is less than the size

o f V, then Y is W L E R than V. For example,

SIZE(4,PUFF) & SIZE(14,BmER) & 4 14 = ’ SMALLER(PUFF,mER).

T h u s second rule defines a new relation SMALLER, w h o s e

instances d o not appear explicitly in the semantic network

(Figure 3-15(b)).

T h e third inference rule says that, if X i s a Y, and U i s

R-related to Y, then U is also R-related to X. For example,

Now let us consider the following example:

ISA(DOG, MAPVMAL) & ISA(CAT, = ’ ISA(CAT, DOG).

123

This is a v a l i d (by the application of inference rule 3) but

erroneous inference. To avoid this kind of problem, i t is

necessary to have some non-syntactic (e.g., semantic) knowledge

about the relations to which inference rules can be applied.

..

One solution is to embed the inference rules in the

inference engine along with the necessary ad hoc knowledge to

avoid problems.

Another solution is to have a rule, like the third one in

the Figure 3-15(c), for each relation that is inheritable.

However, both these solutions will cause problems, if the number

of relations occurring in the semantic network i s large or if the

relation set can be modified or expanded.

A more general approach, originally proposed by Simnons and

Slocum [Simnons & Slocum, 7 2 1 , is t o treat relation names and

object names more uniformly. With this approach, relations can

be arguments to relations, and hence have the same properties as

other objects. For example, temperature is defined as an

inheritable property by an instance like

INHERITABLE (TEMP)

The third inference rule in the Figure 3-15(c) can then be

rewritten as

ISA(x, y) & r(u, y) & INHERITABLE(r) =) r(u, x)

One advantage o f this approach i s that i t provides a natural

method of delineating legal values in a relation and, therefore,

124

it enhances error detection and consistency checking. Another

advantage is- improved flexibility and expandability. The m a j o r

disadvantage of this approach i s i t s loss in run-time efficiency.

A n o t h e r choice and tradeoff in a semantic network i s storage

space and computation time. This arises f r o m the decision about

which relations and w h i c h instances in the relations should be

stored explicitly and w h i c h should be computed via the inference

rules. The number of instances of relations can g r o w in a highly

non-linear w a y ; for the example in Figure 3-15(b), the number of

instances of the relation, SMALLER, grows as a quadratic function

of the n u m b e r of DOGS and CATS.

A technique often used w i t h semantic networks is to m a k e a

distinc t i o n between general knowledge and specific knowledge and

to store the two in a different manner. Referring to Figure

3-15(b) one c a n observe that specific knowledge lies at a l o w

level in t h e t r e e . T h i s m e a n s [B a r n e t t & B e r n s t e i n , 7 7 1 :

(1) T h e r e are few, if any, chains below i t .

(2) Properties have simple values.

(3) &st objects in the s a m e general classification have

all and only a known set of properties.

(4) T h e r e are large number of objects in a general class.

T h e specific knowledge in our example can be displayed as

125

FIDO DOG 40 I b T a n Mary’s
B<IWSER DOG 14 l b T a n Firehouse
PUFF CAT 4 l b B l a c k Bob’s

The advantage o f dividing knowledge into general and

specific is that:

(1) T h e specific knowledge can be gathered into a tabular

form, as shown above, by simple mechanical means.

(2) T h e specific knowledge (which i s u s u a l l y m o st of the

semantic net) c a n be kept in relatively inexpensive

secondary storage and even accessed through an

efficient, existing data management system.

(3) T h e general knowledge can be kept in primary m e m o r y

a n d , because m o s t processing by the inference rules

occurs o n other than ”bottom” of the network,

efficiency can be maintained.

3.2.6.6 A d v a n t a p e s D i s a d v a n t a m

Advantages:

(1) Semantic nets can be used to represent definitional

and relational knowledge that i s too complex f o r

ordinary data management techniques.

(2) Semantic networks allows inclusion of a d h o c

information.

126

Disadvantages:

(1) T h e m a i n disadvantage o f using semantic networks to

represent knowledge in KBSs is that the chunk size i s .

fairly s m a l l . This causes two problems:

(a) Instances of relations do not lend

themselves to being used in explanations of

chains o f reasoning developed by the inference

rules - chains can be quite lengthy and tedious.

(b) Processing a semantic net c a n assume large

amounts of computer time.

(2) A n o t h e r disadvantage i s that m a n y kinds of knowledge

(e.g., procedural knowledge, relative knowledge, etc.)

cannot be expressed as instances o f relations in a

natural manner.

An example o f KBS w h i c h u s e s semantic nets to represent

knowledge i s PROSPECTOR [Duda, et a l , 781.

127

Semantfc nets are very popular knowledge representation

m e t h o d s in AI applications. Object-and-link structures capture .

something essential about symbols and pointers in symbolic

computation [Barr & Feigenbaum, 8 1 1 .

But processing n o n trivial nets c a n consume large amounts of

computer time. Besides these problems, there are m o r e subtle

problems involving semantics of the network structures [Barr &

F e i g e n b a u m , 8 1 1 :

- W h a t does a node (object) really m e a n ?

- I s there a unique w a y to represent a n idea?

- H o w i s the passage o f time to be represented?

- H o w does one represent things that are not facts about

t h e w o r l d but rather ideas or beliefs?

- W h a t are the rules about inheritance o f properties in

n e two r k s ?

Current research o n network representation schemes attempts

to deal with these and similar concerns.

3.2.7

3.2.7.1 I n t r o d u c t i o n

T h e r e i s abundant psychological evidence that people use a

large, w e l l coordinated body of knowledge f r o m previous

128

experiences to interpret n e w situations in their everyday

cognitive activity [Barr & Feigenbaum, 811. H o w can we represent

this type o f knowledge in a computer system (program)? M a n y o f

the techniques of AI applications (programs) are not powerful

enough to a p p r o a c h human performance in relation to vision,

language, a n d conxnon sense.

M i n s k y [Minsky, 751 first proposed a theory o f nframesm as a

m e c h a n i s m for representing knowledge in the computer. His paper

has evoked a great deal of discussion and interest in exploring

further about frames and its theory. Some c o m u o n motivating

issues f o r this interest in frames are:

(1) A c c o m n o d a t i o n of both declarative and procedural

knowledge in the same representational formalism.

(2) A c c o m n o d a t i o n of m u n d a n e , ad h o c , a n d idiosyncratic

knowledge along with that w h i c h is m o r e uniform and

repetitive in nature.

(3) A c c o m n o d a t i o n o f partial and somewhat contradictory or

inconsistent knowledge.

(4) A b i l i t y to plausibly reason f r o m a k n o w l e d g e base with

features like the above.

T w o m a j o r issues not yet dealt w i t h within the emerging

theory of frames are explanation of s y s t e m behavior a n d

naturalness o f the knowledge-acquisition interface.

129

S o m e of the desirable features o f frames are given below

(Kuipers [Kuipers, 7 7 1 calls t h e m a "wish list"). No single . '

frame based s y s t e m has all the desirable properties and i t may be

many years before the technical problems implied by such a frame

theory (like the development o f large-scale organization of

knowledge, and the ability of these structures to provide

d i r e c t i o n for active cognitive processing [Barr & Feigenbaum,

8 1 1) c a n be precisely stated and solved. The following

d i s c u s s i o n is based o n [Kuipers, 771.

(a) D e s c r i D t i o n

A frame provides a n e1,aborate structure for creating and

m a i n t a i n i n g a description of a n object in a domain. And a s such

a frame c a n be viewed as a single knowledge chunk. T h e

d e s c r i p t i o n o f a n object includes a number of features o f that

object and the relations w h i c h hold among those features.

A f r a m e has named slots corresponding to those definitional

characteristics (i.e., features, relations, etc.). A primitive

element in a frame mag be expanded to another frame and/or

procedural knowledge m a y be attached to a n element w h e n it's

internal description becomes o f interest.

(b) I n s t a n t i a t i o n

T h i s i s the process by w h i c h the frame creates a description

130

f r o m observation of a n object in i t s domain. Features w h o s e real

properties have not been observed are represented by default (or

assumed) values. T h e s e default values c a n be static o r computed

in terms o f the values in other slots.

A frame’s predicted (o r expected) description can be used to

guide the collection of observations for instantiation. I t also

p r o d u ces the defaults w h i c h substitute for unobserved features.

. . (d) JustificatiQp

Different features of the frame description have different

amounts of confidence. Some are clear observations, others are

choices among a f e w alternatives, and others are default

assignments.

(e) V a r i a t i o n

A frame represents a certain (limited) domain, and hence a

range o f variation for objects w h i c h belong t o that d o m ain i s

l i m i t e d and specified. W h e n a feature (or set of features) o f a

frame is outside the permissible range of variation in a frame,

i t m a y cast doubt o n the applicability of this frame and m a y

indicate to the correction m e c h a n i s m that another m e c h a n i s m i s

c a l l e d for.

131

(f) C o r r e c t i o n

In m o s t comnon cases of recognition, the identity of the

object being described is not initially known. So selecting the

proper frame to instantiate i s part of the problem. The current

"best guess" frame attempts to create a correspondence between

w h a t i t expects to s e e and the observations actually available.

Anomalies may indicate that the current frame is not

correct, and that a different point of v i e w i s called for. The

frame can analyze the anomoly to select a m o r e appropriate

replacement. T h e procedures that t e s t and deal with unusual

conditions are called m p n i t o r s .

For small changes in the observer or the observed,

perturbation procedures correct the description w i t h o u t complete

re c o m p u t a t i on.

(h) T r a n s f o r m a t i a n

In case of m o r e significant changes, transformation

procedures propose frames suitable for the n e w situation. Those

experiences I- the experiences that lead to those significant

changes - are saved (b y complaint procedures) and incorporated

into newer versions of the "faulty" frames w h e n structural

revisions become possible.

132

I t is not possible to give a simple example that has all the

above properties of a frame. The following example (Figure 3-16,

based on [Barnett & Bernstein, 7 7 1) i s provided to illustrate

some of the concepts involved in frame based systems.

The top of the Figure 3-16(a) provides a description about a

dog. Explanation for each line is provided below (line numbers

are not part of frame definition; they are provided for

explanation purposes only).

Line 1 : The first line states that a dog is a mammal.

Line 2 : Line 2 means that there is a slot named "kind" (of

dog), that may be filled with a type of "breed".

"Breed" is i t s e l f a frame.

Line 3: The color of the dog is limited to one o r a combination

of the colors selected by the SUBSET.OF operator.

Line 4 : The FRCM operator is used to pick out values from other

frames and default values are indicated by underlining.

Thus the combined effect of the phrase Color QE

Kind is to make the default value for the color of a

dog the default f o r his breed.

Line 5 : Line 5 means that there is a slot f o r the number of

legs and the range i s 0 to 4 with a default o f four.

Line 6: Line 6 represents a slot f o r weight, which is a

positive integer with a default that is determined by

133

the typical size of m e m b e r s o f the same breed.

Line 7: The state of the dog is either "adult", the default, or

"puppy", if age is known to be less than one year.

Line 8: T h e age of dog is restricted to be a positive number

a n d its default value can be calculated procedurally by

"now birthday".

Line 9: T h e birth date of the dog i s represented as a date in

this slot.

Line 10: T h e name of the dog i s represented a s a string in this

slot.

Line 1 1 : T h e end of description of dog frame.

F i g u r e 3-16(b) shows a frame for "boxer".

1
2
3

4

5
6
7
8
9
10

11

8

dog FRAME ISA mamnal
kind breed
color SUBSET.OF {tan brown black w h i t e rust)

F R (M c o l o r Q E k i n d

leggedness 0.. .A
weight ' 0 , E m Y l & Q E U

age ' 0 , PPW b i r t h d a y
state adult OR puppy if age 1

birthday date
name string

boxer FRAME ISA
color
size
tail
ears
temperment
CXxmLAINTS

END

breed OF dog
ONE.OF {_tan brown brindle)
40.. . 6 0
b o b b e d OR long
b o b b e d O R floppy
playful
IF w e i g h t > 100 THEN ASSUME

boxer
(great dane)

Figure 3-16. EXAMPLE FRAME DEFINITIONS
[Barnett & Bernstein, 771

135

L i n e 1: L i n e 1 declares that boxer is a breed and i t is a dog.

L i n e 2: T h e color of a boxer i s restricted to one of the colors

I

tan, brown, and brindle, w i t h a default of tan. I t i s

legal for this to conflict w i t h the dog frame (Figure I

3-16(a)); i.e., brindle i s not mentioned in that frame.

If this breed did not have a color restriction, then

..

this slot w o u l d be omitted; this w o u l d have the effect

of not giving a default assignment for color in the dog

frame (in Figure 3-16(a)).

L i n e 3: T h i s slot says that the size of a boxer i s between 40

and 60 pounds. No default is specified. T h u s w h e n the

dog frame i s applied to boxer, this default range will

be used for weight (rather than an exact value).

L i n e 4: Th i s slot says that tail c a n be "bobbed" or "long" w i t h

"bobbed" being the default.

L i n e 5: T h e ears can b e either "bobbed" or "floppy" w i t h

"bobbed" being the default.
I

L i n e 6: L i n e 6 s a y s that temperament is always playful.

L i n e 7: T h i s is an example of a complaint and a d hoc knowledge

used to m a k e a reconmendation, n a m e l y , if y o u see a I

giant boxer (> 1001bs.), then assume that i t m ight be a

Great D a n e instead.

L i n e 8: End of description of boxer frame.

136

. . 3.2.7.4 - L A U i t i q p S c e n a r i a

Procedures c a n be attached to slots to recognize (or reason)

a task. In some frame based systems, attached procedures are the

principal m e c h a n i s m s for directing the reasoning process, being

activated to fill in slots or being triggered w h e n a slot is

filled [Bobrow, 791.

Filliu S l o t s

A f t e r a particular frame has been selected to represent the

current context or situation, the primary process in a frame

based s y s t e m is often just filling in the details called for by

its slots.

Figure 3-17 shows an example use of frame in a recognition

task. The t o p of the figure (Figure 3-17(a)) shows some feature

values that have b e e n detected for a n object, here identified as

654.

A general matching procedure w o u l d attempt to instantiate

all frames in the s y s t e m until a reasonable fit w a s found: in

o u r example, "boxer" is a reasonable match. T h e n the slots in

the boxer frame will be filled w i t h the observed data. If data

is not available, default values will be used. If there is no

contradiction, procedural attachments will be used to decide the

values for the slots.

137

LW-LEVEL INFORMATION

OBJECI' 6 5 4

color = tan
ears = bobbed
leggedness = 4
size 40 - 45
temperment = m e a n

TRIAL IDENTIFICATION

[OBJECT 654 ISA dog

kind boxer WITH [c o l o r t a n
s i z e 40 - 45
tai 1 ASSZMED bobbed
ears bobbed
temperment EXCEPTIONAL

me a n]
color tan
leggedness 4
weight 40 - 45
s t a t e ASS-D adult]

F i g u r e 3-17. INEXACT MATCH BY A FRAME SYSTEM
[Barnett & Bernstein, 771

138

Default values are relatively inexpensive m e t h o d of filling

slots; they d o not require powerful reasoning process. These

m e t h o d s account for a large part of the power of frames - any new .

frames interpreting the situation c a n m a k e use of values

determined by prior experience, without having to recompute them.

W h e n the needed information m u s t b e derived, attached procedures

can take advantage of the current context, namely, slot-specific

heuristics. In other w o r d s , general problem-solving methods can

b e augmented by domain-specific knowledge about h o w to accomplish

specific, slot-sized goals.

In our example, a f t e r filling the color and size slots, as

information for the t a i l slot i s not available, a bobbed tail

will be assumed (assuming there w a s a frame f o r tails).

Similarly, w h e n i t tries to fill the temperment slot, i t

notes the observed feature, "mean", w h i c h i s a contradiction to

the expected value "playful". Thus, i t activates the complaint

m e c h a n i s m w h i c h notes that this particular boxer (object 654) is

m e a n and i t i s exceptional.

I f the w e i g h t of the boxer w a s too large, the complaint

m e c h a n i s m could (tentatively) change the identification of the

instantiation of the boxer into the one for a G r e a t Dane. There

a r e two advantages to this:

(1) R a t h e r than returning to a very general

pattern-matching activity, a candidate that i s highly

likely to be right i s selected next.

139

(2) T h e slot values for this frame c a n be transferred to

the new frame w i t h l i t t l e additional w o r k .

I f the m a t c h i s good enough, then the frame can become m o r e

informative. In our example, the transformation i s f r o m boxer to

boxer dog, w h e r e m o r e information is observed, e.g., leggedness.

A l s o , the dog i s assumed to be adult.

The above steps (prediction, correction, and gathering of

m o r e information) continue until all of the l o w level information

is consumed. The belief i s that the style of recognition will be

m o r e goal directed and hence m o r e accurate and efficient than

general techniques that depend upon regularity and uniformity of

structure.

3.3. Inference m i n e

3.3.1 Primara Functi- p f I n f e r e n c e E I L g i n e

The IE provides central control of the KBS and thus affects

both the performance and power of the system. The functions of

the I E ' a r e : knowledge use and control, knowledge acquisition, and

explanation.- To d o these, the IE mu s t :

(1) Control and coordinate s y s t e m activities and

resources.

(2) P l a u s i b l y reason about domain specific problems by

having access to and using the contents of the

140

knowledge base, the contents of workspace, and

knowledge and procedures embedded in the I E .

(3) Link the KB with the inference module(s).

As was mentioned in Section 2.5.1, in a KBS, the ability to

solve a problem depends on:

(1) H o w m a n y paths there are to a solution.

(2) The ability of the IE to reduce the number to a

minimum.

(3) The knowledge in the KB.

(4) What information is available within the problem

statement.

Therefore, although the I E is in comnand and acts as the

driving element, the path to a solution a n d the criteria for

which to accept a solution or abort a particular path are highly

dependent on the content of the KB and the problem data.

In the next section, some terminology (definitions) to

describe inference engines i s presented. This terminology is

based on [Nilsson, 8 1 1 .

. -. . 3.3.2 pefinitiom

Sound LE: A IE is sound if i t produces only correct or " I don't

know" solutions, i.e., i t does not produce incorrect solutions.

m l e t e U: A I E i s complete if i t can always produce a

141

solution to a posed p r o b l e m w h e n a solution exists.

ssible u: A IE is admissible if i t always finds a

minimal-cost solution w h e n a solution exists. T h e cost i s taken

to m e a n the cost of using the solution, not necessarily the cost

of finding i t .

3.3.3. J n f e r e n c e E n g i n e Control S t r a t e g i e s

In this section, some control strategies used by IEs are

presented.

T h e input to a n IE i s usually a set o f initial conditions

(or states) and goals. T h e IE uses the KB and one of the control

strategies to obtain the goal(s), operating w i t h i n the

constraints imposed by the initial conditions.

S o m e of the control methods are discussed below:

. . 3.3.3.1 Forward Chain-

This m e t h o d involves applying the KB to the given conditions

to infer n e w conditions: continue in this m a n n e r until the goal

i s satisfied. T h i s strategy is a l s o called data-driven,

event-driven, and bottom-up (see the example in Section 3.2.5).

T h e rules applied to a state to produce new states are called

F-rules.

142

. . 3.3.3.2 m C h a l n l n p

This method involves applying the KB to the goal (or goal

description) to produce new subgoals; continue this manner until

constraints or primitive conditions (known to be solvable) are

reached. Backward chaining i s also known as goal-driven,

expectation driven, and top-down. The rules applied to produce

goals to produce subgoals are called B-rules.

3.3.3.3 Chain B o t h Y a v s

This method involves forward chaining from the initial

conditions and backward chaining from the goal until a conmon

middle term is produced, i.e., F-rules are applied to initial

state and B-rules are applied to goal states. The control

mechanism must, at every state, decide whether to apply an

applicable F-rule or an applicable B-rule.

. .
3.3.3.4 Middle Term Chaining

This method involves using the KB, guessing a middle term

and solving separately the problem of getting from the initial

conditions to the middle term and from the middle t e r m to the

original goal. Continue in this manner until a solution in terms

of primitives is generated. This method is also called problem

reduction.

Figure 3-18 shows an example of first three techniques. The

problem is to transfer 4 to 20. The KB contains three rules:

143

(1) Any integer, X, can be replaced by 2X (X -’ 2X).
(2) Any e v e n integer, 2X ca n be replaced by X (2X - > X).

(3) Any integer, X can be replaced by 3X + 1 (X - > 3X +

1).

. Start with 4 Figure 3-18 shows the use of f o r w d m , .

and apply the operators until 20 i s produced.

. Start with the Figure 3-18 shows the use o f b a c k d a l n l n g

g o a l , 20, and use the inverse of the above rules and continue

until 4 i s produced.

. .

Figure 3-18 shows the use o f the U b o t b w a v s technique.

F i r s t , one s t e p of back chaining produces the nodes labeled 1 0

and 40. T h e n one step of forward chaining produces the nodes

labeled 8, 2, and 13. Finally, one m o r e step of b a c k chaining is

done to produce the nodes labeled 5 , 3, 13, and 80. Since 1 3 is

in both the forward and backward grown “wave fronts”, the process

c a n terminate: otherwise, the steps of forward and backward

chaining w o u l d continue until either a solution w a s found or the

s y s t e m gave u p because of violation of some constraints (like

computation time, for instance).

144

4

/
f i

32 49

/;
3 5

50 76 14 b

10 /

$!
160 26 4

BACKWARD CHAINING

CHAIN BOTH WAYS

143

F i g u r e 3-19 shows e n example 0 9 problem reduction approach.

The problem is t o s h o w that AD equals CD. To s h o w this, the

problem can be reduced to the following subproblems CNilsson,

711:

(1) In order to s h o w that two line segments are equal,

s h o w that they are Corresponding elements o f congruent

triang ler.

(2) In order to show that two triangles a r e congruentl

s h o w the equality o f a side and t w o triangles in

corresponding positions or o f an a n g l e and two rider.

(3) In order to s h o w that two angles a r e equal, show th8t

they are both right angles.

O f course, these problems could b e further divided into

primitive f o r m . The actual prooQ of this problem can be found in

CNilssonl 711.

An example sqstem, Gelernter's Geometry Theorem-Proving

Eachine CNewell Q Simon, 723, uses this technique to solve a

given problem.

GIVEN: ABD= CBD
A D L B A
cD*Bc

PROVE: A D = c D

A /

Figure 3-19. Diagram for Problem Reduction

CNilsron, 711

146

3.3.3.5 pjrecti-1 itx pf Control S t r a t e p v

Anothe; w a y of classifying IE control strategies is by i t s

directionality. T h i s type of classification i s typically used in

s p e e c h understanding systems where the input (waveform) i s

linearly ordered. T h e two m a j o r types are: fixed directionality

and variable directionality.

..

(a) E i x e d Directionalitv

This type o f control strategy is typically described as

left-to-right or right-to-left. In the fixed directionality type

of control strategies, the input is processed in a predetermined

d i r e c t i o n until either:

(1) All data have been consumed and the problem i s

successfully solved or

(2) A b l o c k i s reached and n o further progress can be

m a d e .

In the latter case the s y s t e m reacts in a predetermined

fashion, typically backing up to a point before the block

occurred at w h i c h point a n alternative option w a s available. At

this point, an alternative path is assumed, and processing of the

input is continued in the original direction. T h i s technique is

iterated until either the p r o b l e m is solved or no m o r e

alternatives exist.

147

(b) Variable P i r c c t i a n a l i t v

T h e first problem in speech understanding systems is, given

a sentence to understand w h e r e to start, starting with the first

w o r d in a sentence is not necessarily the m o s t efficient strategy

[Barr & Feigenbaum, 811. T h e fixed-direction type of strategies

work w e l l w i t h the precompiled n e t w o r k representation. T h e

disadvantage o f this strategy is that if the first w o r d is not

identified correctly, or is not identifiable, understanding the

rest o f the sentence is retarded. In such cases variable

d i r e c t i o n control strategy can be used.

- .

A completely variable directionality in a s y s t e m is often

called island driving. . The idea i s to start processing the input

at the point o r points deemed to be least ambiguous or contain

the m o s t robust clues as to their identity. T h e points (also

called anchor points o r islands) are then grown, m i d d l e outward

until they collide or a block occurs. If a block occurs, another

set of points are determined in the unprocessed areas. Thus, by

. .

starting in areas containing the m o r e certain information (more

c e r t a i n hypotheses), part o f combinatorial explosion of

fixed-directionality strategies will be avoided because back up

will rarely occur across the islands, but only between them. A

p r o b l e m with the island driving strategy, however, is that there

c a n be m a n y islands a n d , h e n c e , m a n y hypotheses most of w h i c h m a y

not be reliable and soon have to be abondoned.

T h i s t y p e o f strategy is used in HEARSAY, an d in the SRI

148

Speech Understanding System.

Another strategy, explored in HWIM ("Hear What I Mean",

developed by BBN) [Wolf &Woods, 8 0 1 , is a hybrid between island

driving and the left to right strategy. The problem of not being

able to understand the first word in the sentence is overcome by

trying to understand any of the first three or four words. Then

the expansion of this word is in one direction at a time: first

back to the beginning of the sentence, and then to the end. This

dramatically reduces the number of extension hypotheses that must

be considered at one time [Barr & Feigenbaum, 8 1 1 .

Another way of differentiating IE strategies is via

breadth-first vs. depth-first.

-StratePv 3 . 3 . 3 . 6 Breadth - First

In a breadth-first system, all possible methods of

continuing are attempted in parallel. This is shown in Figure

3 - 1 8 , where each (horizontal) level of the graph was generated by

a single cycle of the system. The breadth-first strategy is

described by the following algorithm (from [Nilsson, 7 1 1) :

(1) Put the start node on a list called OPEN. If the

start node is a goal node, a solution has been found.

(2) If OPEN i s empty, exit with failure; otherwise

continue.

149

(3) Remove the first node on OPEN and put i t on a l i s t

c-alled CLOSED; c a l l this node n.

(4) Expand node n, generating all of i t s successors. If
..

there are no successors, go imnediately to (2) .

(5) Put the successors at the end of OPEN and provide

pointers f r o m these successors back to n.

(6) I f a n y of the successors are goal nodes, exit w i t h the

solution obtained by tracing back through the

pointers; oth'erwise g o to (2).

An 8-puzzle i s a square tray containing eight square tiles

of equal size numbered 1 to 8. T h e space f o r the ninth tile is

vacant. A tile m a y be m o v e d by sliding i t vertically or

horizontally in to the empty square. The p r o b l e m i s to transform

one particular configuration say, that of Figure 3-20(a), into

another g i v e n t i l e configuration say, that of Figure 3-20(b).

Figure 3-20. 8-Puzzle

Figure 3-21 (taken f r o m [Nilsson, 8 1 1) shows the

breadth-first strategy applied to an 8-puzzle. T h e nodes are

labeled by their corresponding state description and a r e numbered

1so

in the order i n w h i c h they w e r e expanded. T h e dark branches s h o w

a solution of five m o v e s .

Control- 3.3.3.7 D e D t h - First

In a depth first system, some path (node, state, etc.) i s

selected and a single continuation is attempted, i.e., the node

i s not fully expanded all at once. This path continues growing

until either the path reaches a solution or some path-length

constraint i s violated. In the latter case, the path is backed

up to the deepest node at w h i c h an alternative expansion exists.

At that point, another path i s generated. T h i s process continues

until either a solution i s produced or the alternatives are

exhausted (Figure 3-22).

The d e o t b P f a r o d e i s defined as follows [Nilsson, 711:

(1) T h e depth of the root node is zero.

(2) T h e depth of any node descendent of the root i s one

plus the depth of i t s p a r e n t .

The following a l g o r i t h m describes the depth-first control

strategy (t a k e n f r o m [Nilsson, 711):

(1) Put the start node on a l i s t called OPEN. If i t i s a

goal node, a solution has been found.

(2) I f OPEN i s empty, exit with failure; otherwise

continue.

0RK;INA-L PAGE IS
OF POOR QUALtTY

I d

I

152

(3) Remove the first node f rom OPEN and put i t on a l i s t

c a l l e d CLOSED. Call this node n.

(4) If the d e p t h of n equals the depth bound (maximum

depth), g o to (2) ; otherwise continue.

(5) E x p a n d node n generating all successors of n. Put

these (in arbitrary order) at the beginning of OPEN

and provide pointers back to n.

(6) If a n y o f the successors are goal nodes, exit with the

solution obtained by tracing back through the

pointers; otherwise g o to (2).

. - Bn -le. 3 Puzzle

Figure 3-23 shows the tree generated by using depth-first

strategy. The problem, like before, w a s to t r a n s form the

configuration shown in Figure 3-20(a) into the configuration

3-20(b).

Figure 3-23 (t a k e n f r o m [Nilsson, 7 1 1) shows depth-first

control strategy applied to a n 8-puzzle.

M o s t m e t h o d s a n d techniques used to implement inference

engines are restricted by the choice of a representation

technique for the knowledge base (see Section 3.1.2, "Choices and

Restrictions"). H o w e v e r , a f e w m e t h o d s (e.g., search methods)

are general e n o u g h to be used with a variety of knowledge base

representations. In this section, some search techniques are

discussed.

153

65
_ -

FIGURE 3-22, DEPTH-FIRST RACK CHAI NING

154

3.3.4.1 S e a r c h Techpiaues I

S e a r c h techniques used in KB and AI systems refer to a large - ’ I
body of core ideas that deal with deduction, inference, planning,

coxmnon sense, and related processes. T h e real p r o b l e m w i t h

search technology (or techniques) is:

,
I

I
I

(1) To find a n algorithm w i t h a specified set of I

,
characteristics, and

(2) T o ensure that that a l g o r i t h m is efficient and does

not suffer f r o m combinatorics w h e n handling problems

in the intended area of application. To accomplish

this. i t i s necessary to incorporate domain-specific

know1 edge.

3.3.4.2 S e a r c h Svstem C m p o n e n t s

A search s y s t e m consists of five m a j o r components: I

(1) S e l e c t - pick the next activity to be performed f r o m

agenda of possible next activities.

(2) ExDand - perform the selected activity, w h i c h often

m e a n s enumeration o f some o r all of the predecessor

activities.

.

156

(3) E v a l u a t e - compute merit scores for activities

created by the expansion process.

(4) Prune - discard hopeless cases or those that appear

to have l i t t l e promise.

(5) Terminate - determine whether to continue processing

and whether the problem has been sufficiently solved.

F r o m the above five components, i t i s easy to realize the

importance of knowledge base in providing accurate guidance for

each component (by incorporating domain-specific knowledge).

This could improve the s y s t e m performance by orders of magnitude.

In many search m e t h o d s , the selection, evaluation, and

pruning (if any) are combined into a u n i f o r m numerical technique.

The function used f o r this purpose i s called a n evaluatiqp

f u n c t i o n .

3.3.4.3 E v a l u a t i o n P u n c t i o n lfl

T h e purpose of a n evaluation function i s to provide a m e a n s

for ranking those nodes (activities) that are candidates for

expansion to determine w h i c h one i s m o s t likely to b e o n the best

p a t h to the goal [Nilsson, 7 1 1 .

S u p p o s e - some function, f, could be used to order nodes for

expansion, then f(n) denotes the value of this function. The

evaluation function f i s defined s o that the m o r e promising a

n o d e is, the smaller is the value of f. The node selected for

e x p a n s i o n is one at which f is minimum.

157

Conventionally, the nodes are ordered in increasing order of

their f values. An algorithmwhich selects a node (from a l i s t

of nodes called OPEN) having the smallest f value (for next

expansion) i s called an ordered - search &orithm i.e., an

ordered-search algorithm selects a node for expansion at which f

i s minimum.

3 . 3 . 4 . 4 Drdered Sear& u o r i t h m

The ordered search algorithm (taken from [Barr & Feigenbaum,

8 1 1) is given below.

(1) Put the start node s on a list, called OPEN, of

unexpanded nodes. Calculate f (s) and associate its

value with node s.

(2) If OPEN is empty, exit with failure; no solution

exists.

(3) Select fromOPEN a node i at which f is minimum. I f

several nodes qualify, choose a goal node if there is

one, and otherwise choose among them arbitrarily.

(4) Remove node i f r o m O P E N and place i t on a list, called

CLOSED, of expanded nodes.

(5) If i is a goal node, exit with success; a solution has

been found.

158

(6) Expand node i , creating nodes f o r all i t s successors.

For every successor node j o f i:

a. Calculate f(j).

b. I f j i s neither in l i s t OPEN nor in l i s t CLOSED,

then add it to OPEN, with i t s f value. A t t a c h a

pointer f r o m j back to i t s predecessor i (in

order to trace back a solution p a t h once a goal

node i s found).

c . I f j w a s already on either OPEN o r C L O S E D ,

compare the f value just calculated f o r j with

the value previously associated with the node.

I f the n e w value is lower, then:

i . Substitute i t f o r the old value.

i i . Point j back to i instead of to i t s

previously found predessor.

i i i . I f node j w a s on the CLOSED list, m o v e i t

back to OPEN.

(7) Go to (2).

T h e w a y in w h i c h the a l g o r i t h m works i s illustrated by

considering the s a m e 8-puzzle example.

1S9

An -le, - - 8 nuzzle

Consid'er the simple evaluation function

w h e r e g(n) i s the length of the path in the search tree f r o m the

start n o d e to node n. and w(n) counts the number of misplaced

tiles in the state description w i t h node n. T h u s the start node

has a n f value equal to 0 + 4 = 4 .

T h e results of applying the ordered-search algorithm to the

8-puzzle a n d using this evaluation function are sumnarized in

F i g u r e 3-24. T h e value o f each node i s circled. T h e uncircled

n u m b e r s s h o w the order in w h i c h nodes are expanded. I t i s

interesting to note that the s a m e path i s found here as w a s found

by o t h e r search m e t h o d s , although the use of evaluation function

has resulted- in substantially fewer nodes being expanded.

T h e search results are critically dependent o n the choice of

the e v a l u a t i o n function, f , w h i c h should discriminate sharply

b e t w e e n promising and unpromising nodes. If the discrimination

is inaccurate, however, the ordered search m a y m i s s a n optimal

160

GOAL NODE (5)
7 6 5 - 6 5

FIGURE 3-24, 1 TH H
BASED ON CNILSSON, ‘711

161

solution o r all solutions. I t c a n be proved [as in Nilsson, 711

that the ordered search algorithm i s ”sound” no m a t t e r h o w bad

the evaluation function is.

In the next section one particular evaluation m e t h o d which

c a n produce a n optimal (minimum cost) solution i s described. I t

is called the A* algorithm.

T h e A* a l g o r i t h m being described w a s proposed by Barr &

F e i g e n b a u m [Barr & Feigenbaum, 811. Historically, the

predecessors of A* include Dijkstra’s [Dijkstra, 591 and M o o r e ’ s

[Moore, 591 algorithms. A class of algorithms similar to A * , is

used in operations research under the name of branch-and-bound

algorithms.

In A*, the evaluation function, f ’ (x) is the cost of a

solution p a t h constrained to go through node x ; h e n c e , its value

. . . is to b e -zed . Further, f ’ i s assumed to be additive in the

cost of g o i n g f r o m one node in a path to another. T h u s , if n(1)

.... n(m) (n(1) = start, n(m) = g o a l) i s a n optimal solution

p a t h , t h e n

w h e r e K (x , y) i s the cost of going f r o m state x to state 9 in one

step. F o r a n y node, n, f’ c a n be expressed as

162

where f’(x;g) i s the minimal cost of a path (of perhaps many

steps) from x to y. Normally, the above i s written as ..

where

g(n) = f’(start. n) and

h(n) = f*(n, goal).

W e desire our evaluation function f to be an estimate o f f’.

Thus f can be approximated as

Where g ’ is the estimation of g , and h ’ i s the estimation of

h.

The A + algorithm is given below [Hart, et al, 6 8 1 :

(1) Mark s “open” and calculate f(s).

(2) Select the open node n whose value of f is smallest.

Resolve ties arbitrarily, but always in favor of any

node n belonging to T (T is the set of goal nodes).

(3) If n belongs to T, mark n ”closed” and terminate the

algorithm.

(4) Otherwise, mark n closed and apply the successor

operator S to n. Calculate f for each successor of n

163

and mark as "open" each successor not already marked

closed. Remark as open any closed node n(i) which is

the successor o f n and f o r which f(n(i)> is smaller

now than i t was when n(i) was marked closed. Go to

(2).

- ,

I t can be shown that A* is admissible and optimal [as in

Nilsson, 7 1 1 . To guarantee admissibility, a necessary condition

is that

h'(n) (= h(n) f o r all n.

A necessary condition for being optimal is that

This is called the consistency condition. Without this

constraint, A* will be still be admissible but no longer optimal

[Nilsson, 7 1 1 .

3.3.4.6 AM) 'OR GraDh

The discussion in the previous sections (including

breadth-first and depth-first strategies) i s related to what i s

generally known as ~ t a t e saace search. The 8-puzzle is a simple

example of state-space representation. This section discusses

search methods in relation to problem-reduction.

A generalized notation for problem reduction is called the

AND/OR graph. According t o Nilsson [Nilsson. 7 1 1 , an AND/OR

graph is constructed according to the following rules:

A

-Each node represents either a single problem or a ret

09 problems to be solved. The graph contains a start

node corresponding to the original problem.

- .

A node representing a primitive problem, called a

terminal noder has n o descendants.

F o r each possible application of a n operator to

problem P, transforming it to a set o f subproblemsr

there is a directed arc from P to a node representing

the resulting subproblem set. For exampler F i g u r e

3-25 illustrates the reduction of P to three

different: problem sets

P

C

D E F G H

AI B, and C

P

F G H

a. b.

Figure 3-25. An AND/OR Tree

[Barr & Feigenbaum, a13

165

(4) For each node representing a set of two or m o r e

subproblems, t h e r e are directed arcs f r o m the node for

the s e t to individual nodes for each subproblem.

S i n c e a s e t of subproblems can be solved only i f its

m e m b e r s c a n all b e solved, the subproblem nodes are

called AND nodes. To distinguish t h e m f r o m OR nodes,

the arcs leading to AM)-node successors of a common

parent are joined by a horizontal line.

- .

(5) A simplification of the graph produced by rules 3 and

4 m a y b e m a d e in the special case w h e r e only one

application of a n operator is possible for problem P

and w h e r e this operator produces a set of more than

one subproblem. As Figure 3-25 illustrates, the

intermediate OR node representing the subproblem s e t

m a y then be omitted.

A node or p r o b l e m i s said to b e solved if one of the

following conditions holds:

(1) T h e node is in the s e t of terminal nodes (primitive

problems).

(2) The node has AND nodes a s successors and all these

successors are solved.

(3) T h e node has OR nodes as successors and any one of

these successors i s solved.

166

A node or p r o b l e m is said to be unsolvable if:

(1) T h e node has no successors and i s not in the set of

terminal nodes. That is, i t i s a nonprimitive problem - ' .

to w h i c h no operator can b e applied.

(2) T h e node has AM) nodes as successors and one or m o r e

of these successors are unsolvable.

(3) T h e node has OR nodes a s successors and all of these

successors are unsolvable.

T h e difference in searching a n AND/OR graph and a n ordinary.

state-space graph i s the presence of AND. T h i s causes many

conceptual complications to the search problem.

e f m t i o n nf a O~tlmal Solutipn . . .

A solution of a n AND/OR graph i s a subgraph demonstrating

that the start node i s solved. T he cost of a s o l u t i o n tree can

be defined in either of two w a y s [Barr & Feigenbaum, 8 1 1 :

(1) T h e cost. of a solution tree i s the s u m of all arc

costs in the tree.

(2) T h e cost of a solution t r e e i s the s u m of arc

costs along the most expensive path from the root to a

terminal node.

For example, if every arc in the solution tree has cost 1 ,

167

t h e n the s u m cost is the number o f arcs in the tree: and the

m a x i m u m cost is the d e p t h of the deepest node.

Let C(n,m) be the cost of the arc f r o m node n to a
- . _

successor node m. Define a function h(n) by:

(1) If n i s a terminal node (a primitive problem), then

h(n) = 0 .

(2) If n has OR successors, then h(n) is the minimum, over

all its successors m, of c(n,m) + h(m).

(3) If n has AND successors and s u m costs a r e used, then

h(n) is the sumnation, over all successors m, o f

c(n,m) + h (m) .

(4) If n has AND successors and m a x costs are used, then

h(n) is the m a x i m u m , over all successors m, of c(n,m)

+ h(m).

(5) If n is a nonterminal node w i t h no successors, then

h(n) i s infinite.

According to this definition, h(n) is finite if and only if

the p r o b l e m represented by node n is solvable. For each solvable

n o d e n , h(n) gives the cost o f a n optimal solution tree for the

p r o b l e m represented by node n. If s i s t h e n o d e , then h(s) is

the cost of a n optimal solution to the initial problem.

An example AND/OR tree i s shown in Figure 3-26.

168

s

A
h=g

tl t 2 t3 c
h=O h=O h=O h = i n f

h=

B
h=7

D
h =4

u1
i n f

t 4
h=O

h=O h=O

FIGURE 3-26, sur1 COSTS
BASED ON [BARR 8 FEIGENBAUM, ‘811

169

3.3.5 MeasurcsQfPerformance

Section 3.3 i s concluded by briefly discussing two measures

of performance. The definitions and discussion are based on - '

[Nilsson, 7 1 1 a n d [Barr & Feigenbaum, 8 1 3 .

Performance measurement for KBSs i s not easy a s i t is for

many other types of computer systems, because run time and

dynamic m e m o r y consumption of KBSs are often h i g h l y non-linear

functions of some problem parameters. As a result i t is very

difficult to determine the heuristic power o f a s e a r c h technique

in KBSs. Ho w e v e r , certain measures o f performance c a n be used in

comparing various techniques. T h e y are: penetrance and branching

factor.

3.3.5.1 P e n e t r a n c e

The penetrance, P, i s defined as

P = LIT

w h e r e L is the length of the derived path f r o m the initial state

(or n o d e) t o the g o a l, and T is the total number o f states (or

n o d e s) g enerated while searching for a solution.

I f the IE proceeds directly to a solution w i t h o u t generating

a n y false paths o r unused states, the penetrance achieves its

m a x i m u m value 1 . Blind search i s characterized by small values

of P. Since performance i s u s u a l l y nonlinear with L, the value

of P generally decreases with increasing L, and the value of P(L)

170

is estimated t o characterize performance.

3.3.5.2 Branching Factor
- .

Branching factor is more nearly independent of the length of

the optimal solution path. I t s definition is based on the

assumption of a tree with the same total number of nodes, T, as

states produced by the system in solving a problem. The tree i s

further assumed to be one in which:

(1) Every expanded node has B descendants, and

(2) The tree has paths o f length, L, the number o f

operators in the solution path of the original

p r o b 1 ern.

Therefore,

2 L L i
T = B + B + . . . + B = E B

i -0

This can be written as

L+ 1
T (B - l)/(B-l)

and solved for B, the branching factor, by iteration.

By definition, B can never be less than 1 . A value of B

near unity (i.e., small) corresponds to a search that is highly

focused toward the goal with very l i t t l e branching in other

directions, while large values of B indicate that the system has

wasted time expanding nodes not used in the final solution or has

171

included states that have not been further expanded.

3.3.5.3 U l e s

Figure 3-27 shows a graph w i t h T = 15 nodes and a solution

path (shown by the darkened line) of length L = 3. Therefore,

the penetrance

P = L/T = 1 / 5 .

To the right i s shown a balanced tree with T = 15 and L = 3.

As c a n be seen from Figure 3-27, B = 2 and one c a n verify that

This m e a s u r e i s useful in applications w h e r e computation

time is a function of input length: f o r example, the number of

w o r d s in a sentence or input to a natural language understanding

system.

172

a. b.

T = l 5
L = 3
P = l/5
B = 2

FIGURE 3-27, FXAM PLE MOVF GRAPH AND RA LANCED TREE

173

3.4 W o r w Benresentat i o n Isr Blackboard)

3.4.1 I n t r o d u c t i o n

O n e of the major component in a KBS is the workspace

representation (or blackboard). A blackboard records

intermediate hypotheses, decisions, and results that a KBS

manipulates during a p r o b l e m solving activity i.e., i t i s the

e n c a p s ulation of the system’s current state in a p r o b l e m solving

activity. I t includes:

(1) P l a n - the p l a n describes the overall or general.

attack the system will pursue against the current

p r o b l e m (including current plans, goals, problem

states, contexts, etc).

(2) A g e n d a - the agenda is a list of activities that can

be done next (which generally correspond to knowledge

base rules that are relevant to some decisions taken

previously).

(3) H i s t o r y - the history records what has b e e n performed

(and w h y) to b r i n g the s y s t e m to i t s current state,

w h i c h is used to provide explanations.

(4) So l u t i o n Set - a solution set represents the candidate

hypotheses and decisions the s y s t e m has generated thus

far (along with the dependencies that relate decisions

1 7 4

to one another).

A simple example o f a workspace representation in a

progranxning language s y s t e m (like LISP) is a push-down stack.

T h e stack contains the bindings of global variables, temporary

values, and return addresses. In this type of system, the

p r o g r a m counter (which identifies the instruction to be executed

next) acts a s the agenda mechanism. These systems, however, do

not have any explanation mechanism, w h i c h is essential to a KBS.

E v e r y KBS uses some type of workspace for intermediate

decision representation, but only a f e w explicitly employ a

blackboard for the various types of functions described above.

- .

T h e following subsections briefly discuss two techniques

used to represent workspaces : HEARSAY Blackboard (also known a s

(3lU B l a c k b o a r d) and M o v e G r a p h s (o r -/OR graphs).

3 . 4 . 2)TEARSAYBlackboard

T h e designers of HEARSAY-I1 within the Carnegie-Mellon

University S p e e c h Understanding Systems, employed a novel and

interesting w a y to represent a workspace called a "blackboard"

[Erman, et a!, 8 0 1 . T h e s a m e technique has been used in KBSs

built f o r various tasks such as:

X-ray crystallography [Feigenbaum, et al, 771.

Signal interpretation [Nii &. Feigenbaum, 781.

V i s i o n [Hanson & Riseman, 781.

175

Psychological modeling [Rumelhart, 761.

T h e blackboard is a data structure:

(1) On w h i c h the hypotheses and their support criteria c a n

be stored, and

(2) W h i c h acts as a n intermediary among m u l t i p l e knowledge

sources and the system's inference engine.

K n o w l e d g e in HEARSAY-I1 is organized into various knowledge

sources. T h e board i s subdivided into 8 information levels

corresponding to intermediate representation levels of the

decoding process (phrases, w o r d s , syllables, etc.). T h e primary

relationships between levels is compositional: w o r d sequences

are composed o f w o r d s , w o r d s are composed o f syllables, and s o

on. E a c h hypothesis resides o n the blackboard at one o f the

levels and bears a defining label chosen f r o m a set appropriate

to that level. W h e n KSs are activated, they create and m o d i f y

these hypotheses o n the blackboard, record evidential support

between levels (usually adjacent), and a s s i g n credibility

ratings.

F i g u r e 3-28 shows levels and KSs in the HEARSAY-I1 system.

A r r o w s , labeled with KS names, s h o w input (circled ends) and

output (pointed ends) levels.

176

Figure 3-29 shows a fragment of a blackboard (a very

simplified version o f one presented in [Erman, et al, 8 0 1) . As

depicted, the support i s ambiguous. For example, the w o r d ARE at

the lexical level could be supported by the existence of the

phonemes AW, ER at the phonetic level. O r the w o r d ARE could

have been predicted from higher level considerations and then

caused the phoneme predictions. T h e Figure 3-29 also shows

another competing w o r d OR. Th i s could have resulted if the

phonemes AW, ER w e r e ambiguously recognized a s either ARE or OR.

Th e n , the "ARE ANY" w o u l d be in competition with "OR ANY".

T h u s , the blackboard serves as a n ideal structure for

representing competing hypotheses. HEARSAY-If copes with this by

getting the KSs at different levels to cooperate in the solution

process. In doing this, HEARSAY-I1 combines both top-down and

bottom-up processing and reasons about resource allocation w i t h a

process called w. A m o r e detailed

description of this concept can be found in [Hayes-Roth, e t al.

831.

177

-LEVELS-

CONCEPTUAL

-KNOWLEDGE SOURCES- _ .

SEMANTIC WORD HYPOTHESIZER

PHRASAL

LEXICAL

SYLLABIC

SURFACE
PHONEMIC

M N E T I C

SEGMENTAL

PARAMETRIC

1,- w-
\ I - - - -

SYNTACTIC PARSER

SYNTACTIC WORD HYPOTHESIZER

PHONEME HYPOTHESIZER

WORD CANDIDATE GENERATOR

PHONOLOGICAL RULE APPLIER

PYONE-PHONOME SYNCHRONIZER

F-iONE SYNTHESIZER

SEGMENT PHONE SYNCHRONIZER

PARAMETER SEGMENT SYNCHRON I ZER

SEGMENTER CLASSIFIER

FIGURE 3-28, HFARSAY 11 I FVFI s OF REPRFSENTATION
BASED ON CERMAN, ET AL, ’%I

T I M E

178

I

L E X I C A L ANY I I

/
/

/
/

/
./

I A Y I PHONEM I C AW ER

FIGURE 3-29, B I ,ACKBOARD EXAMPLE
B A S E D ON [E R M A N j E T A L j '811

179

To swxnarize, a blackboard fills all the roles of a

w o r k s p a c e representation: agenda, plan, history, and solution

set.

(1) P l a n - T h e blackboard is the globally visible data

structure and multiple levels provide the necessary

abstractions for searching a large space.

(2) &&end& - W h e n a n hypothesis is placed in the

blackboard, i t is to be presented to the KSs that have

the hypothesis level as their input level, and the set

o f all s u c h presentations that have not yet been

performed o n the agenda.

(3) A H i s t o r y - T h e support represented explicitly in the

blackboard is a trace of the evolution of the system’s

state.

(4) Solut imSet - The candidate hypotheses reside at each

level in the blackboard along with a label chosen from

a set appropriate to that level.

180

F i g u r e 3-30 shows an example of a n AND/OR graph. The

example is a formation of a plan to go to New Y o r k City. E a c h
- ._

node in the graph i s subgoal of its parent node (since this i s a

g r a p h , a node m a y have m o r e than one parent). T h e goal "go to

New York" c a n be satisfied by satisfying either the subgoal

"Drive a Car" or the subgoal "Fly by Plane", and is, thus, called

a n OR node. The subgoal "Buy a Plane Ticket" i s satisfied by

satisfying both the subgoals "Get Money", and "Select a n

Airline", and, thus, i s called a n AND node. AND nodes in Figure

3-30 are shown by connecting emanating edges with a n ampersand

(&I. A w o r k s p a c e representation such as this i s called a n AND/OR

gr a p h and i s used in m a n y systems with production rule knowledge

sources.

A s shown in Figure 3-30, the node expansion (for a goal

d i r e c t e d g r a p h) continues until a satisfying set of nodes have

b e e n generated, all of w h i c h are primitive. A primitive node i s

one that poses a p r o b l e m that i s k n o w n to be solvable without a

s e a r c h by the system.

To sumnarize, AND/OR graphs fill the requirements for a

w o r k s p a c e representation:

(1) Plan: Th e graph presents the global data structure

and includes goals and subgoals.

GO TO NEW YORK

FIGURE 3-30, WI F, AND/OR GRAP H

DRIVE
A C A R

FLY
BY PLANE

USE us5 YOUR CAR FRIEND S CAR
BUY

PLANE TICKET

PIAN
THE TRIP

-
GET

A MAP
BUY

GASOL I NE
i

*
r -

GET MONEY SELECT AIRLINE

BEG BORROW STEAL

1 8 2

(2) &&end&: The agenda i s the set of expanded nodes.

I

: The labeled links (not shown in the Figure - ' - I (3) A I j i s t o r E

3-30) give a reason for the existence of each entity.

(4) S o l u t ion-: Each candidate hypothesis or goal could

be represented w i t h a n AND/OR graph.

3 . 4 . 4 BlackboardYersus-GraDh

By comparing the AND/OR gr a p h w i t h the HEARSAY-Blackboard,

one c a n recognize that:

(1) AND/OR graphs have a m o r e uniform structure that can

sometimes be exploited for efficiency.

(2) The HEARSAY-Blackboard has a b e t t e r structure if the

p r o b l e m decomposes into levels of representation and

the s y s t e m has many knowledge sources.

3.5 -Interface

3.5.1 .Function% nfmlnterface

T h e interface i s the comnunication port between the KBS and

the outside world. Based on the functions provided, the

interface of a KBS c a n b e viewed as three different interfaces:

183

(1) U s e r Interface

(2) Knowledge Acquisition (Expert) Interface

(3) D a t a Interface.

T h e u s e r interface provides the necessary facilities for the

user a s a poser of problem and a consumer of results (answers and

justifications or explanations).

T h e expert interface is the system’s port of knowledge

acquisition and is used by a domain expert as the provider of

knowledge f o r the knowledge sources (KSs).

T h e external data interface is similar to that of m o s t other

interactive computer systems, in that i t incorporates:

(1) Facilities for user input o f parameter, data and

responses to the system’s queries.

(2) The m e c h a n i s m for locating and accessing files or data

bases.

M a n y o f the functions necessary to provide the data

interface m a y be drawn directly f r o m the computer system

environment within which the KBS functions, a n d , thus, they are

not d i s c u s s e d here.

In t h e remainder o f this section, U s e r Interface, Expert

Interface, and Knowledge Acquisition process are discussed in

detail.

184

3 . 5 . 2 User Interface

3 . 5 . 2 . 1 Jnt roduc t ion

The user interface critically affects the acceptance of a

KBS by users of the intended domain. The users are (typically)

neither computer scientists, nor programners. A well designed

and properly functioning user interface not only minimizes the

problems associated with learning any new system, but also, in

the long run, improves system productivity by making i t possible

for the users to be more cooperative in problem solving

activities [Barnett & Bernstein, 7 7 1 . In short, a good interface-

could make the difference between a successful KBS and

unsuccessful one.

The user interacts with the interface interactively in a

jargon specific to the domain of the K B S . The advantage of

interactive usage is that the user provides only the necessary

information and could request explanations of system behavior and

results during problem solving activity.

Besides interacting with a KBS in domain specific jargon,

the user inputs the information (and the system outputs results,

explanations, etc.) in some restricted variant of English-like

natural language. Thus, the user interface acts as a natural

language processor. Since handling natural language and all of

its complexities i s equivalent to solving the entire problem of

machine understanding and natural language simulation, only a

brief discussion of some techniques will be presented here.

185

3.5.2.2 User Interface Qaracteristics

Besides domain specific jargon and English-like natural

language, the user interface should possess two additional -

characteristics: soft - failure and self - howledqe.

(1) Soft-Failure: A KBS should tolerate small or simple

errors in a user's input. For instance, if the user's

input consists of spelling mistakes, a KBS should not

only inform the user, but also guide him as to what

are acceptable responses, if not correct the errors

itself. An example of this type o f spelling corrector

i s described in [Teitleman, 7 2 1 .

(2) Self-Knowledge: A KBS system should be able to know

what i t can and i t cannot do. F o r example, i t should

be able to answer user's questions like "Can you

handle problems about X ? " o r "What do you know about

Y?" A system with self-knowledge available has the

potential to accomodate new users in a reasonable

manner [Barnett & Bernstein, 7 7 1 .

3.5.2.3 m- UserInDut,

There are many techniques to implement the input side of the

user interface. Parsing i s one o f the widely used techniques.

Parsing i s the process of "picking apart" the sentences that

were input to the system and determine their meaning, thus

186

providing the foundation for providing an appropriate response.

There are at least seven different strategies.

3 . 5 . 2 . 4 Parsing Strategies

(a) Backtrack ing Versus Parallel .Pro cessing

Some elements in a natural language do not always have

unique meanings. Ambiguities like these force the parser to make

choices between multiple alternatives as it proceeds through a

sentence. Alternatives may be dealt with all at the same time

(called parallel processing), o r one at time using a form of

backtracking - backing upto a previous choice-point in the

computation and trying again. Both these strategies require a

significant amount o f bookkeeping to keep track of multiple

possibilities.

This i s similar to forward chaining vs. backward chaining as

discussed in Section 3.3.4. A parser can operate from the set of

possible sentence structures (top down), or from the words

actually in the sentence (bottom up).

In a strictly top down approach, a parser begins by looking

at the rules f o r the top level goal structure (sentence, clause,

etc.); i t then look. up rules for the constituents of the top

level structure and progresses until a complete sentence

structure i s built u p .

187

In a strictly bottom up approach, a parser first looks at

the rules in the granmar to combine the words of the input

sentence into constituents of larger structures (phrases and

clauses). These structures will be recombined t o show that all

input words form a legal sentence in the grarmzar.

In both strategies discussed above, i t is necessary to

decide howwords and constituents will be combined (bottom up) or

expanded (top down). There are two basic methods: fixed

directionality and variable directionality.

In fixed directionality, the system proceeds systematically

in one direction (normally left to right). In variable

directionality (also called island driving), the system starts

anywhere and systematically looks at neighboring chunks of

increasing size (see the discussion in Section 3.3.3.5,

"Directionality of Control Strategies").

(d) Multiple KnowledPe-

I n natural language processing systems, particularly in

speech understanding systems, another strategy i s to arrange

knowledge into various levels (phonemic, lexical, syntactic,

semantic, etc.), so that the parser can use relevant sets of

facts from a variety of knowledge sources (see Section 3 . 4 . 2) .

1 8 8

3 . 5 . 2 . 5 ParslnP * S v s t e m s

Various natural language processing systems deal with the

above seven design issues in different ways. A few selected _ '

systems are discussed within this section.

ELIZA [Weizenbaum, 661 is a system of this type. ELIZA

(humorously) simulates a Rogerian psychiatrist. Inputs are

processed against a series of predefined binding the

variables of the template to corresponding pieces of the input

string. Inputs are matched to patterns like

where $ 1 matches any string of words and x(i) matches any single

word. Responses are built up by giving corresponding output

patterns such as

WHAT IF x(i) WERE $ (2) ?

Given the input "Today's temperature i s not hot", the system

could produce the response, "What if temperature were hot?" This

is accomplished by matching $ 1 to "Today's", x(l) to

"temperature", and $2 to "hot".

ELIZA and o t h e r systems (like SIR and STUDENT) using this

kind of matching techniques were successful as long as the domain

and style o f dialog i s sufficiently constrained and the system's

designer could incorporate appropriate templates. However, the

method was inaxtenrible, and template matching was soon abandoned

in favor o # more Pophisticated techniques [Barr b F e i g e n b a u m

81 3.
- .

(b) Transition Networks

Perhaps the best known and widely used technique f o r parsing

is the augmented transition network (ATN). ATNo were first

developed b y Woods CWoods, 731. The concept o f a n ATN evolved

from that of a finite state transition diagram, with t h e addition

of tests and "side effect" actions to each arc.

Figure 3-31 shows a finite state transition diagram (FSTD).

B o x e s with S and E represent the initial and final staterl

respectively. The F S T D accepts any phrase that begins with

"the", and ends with a noun and has a n arbitrary number of

adjectives in between. F o r example t h e FSTD shown in ttre Figure

3-31 accepts t h e input phrase "the pretty picture".

n

Figure 3-31. A Finite State Transition Diagram

190

Networks (i) Becursive W i t i ~ p
. .

Gramnars like the ones shown in the Figure 3-31 are

inadequate for dealing with the complexity of natural language -..

representation. To increase the power of recognition, FSTD can

be extended in a natural way to include recursion mechanisms.

These extended FSTDs are called recursive transition networks

(RTNS).

Figure 3-32 shows an RTN (taken from [Barr & Feigenbaum,

8 1 1) . In this figure, NP denotes a noun phrase; PP a

prepositional phrase; det, a determiner; prep, a preposition;

and adj, an adjective. If the input string is "The li t t l e boy in

the swimsuit kicked the red ball", the above network would parse

i t into the following phrases:

Np: The l i t t l e boy in the swimsuit

PP: in the swimsuit

NP: the swimsuit

Verb: kicked

Np: the red ball

In Figure 3-32, one can notice that any subnetwork of an RTN

may call any other subnetwork, including itself. One can also
. . notice that an R T N m a y be gpg - deterministi c in nature; that is,

there may be more than one possible arc to be followed at a given

point in a parse. These alternatives can be handled either by

parallel processing o r by backtracking, as discussed in Section

3.5.2.3.

191

S :

PP:

FIGURE 3-32, A RECURSIVE TRANSITION NFTWORK
BASED ON [BARR & FEIGENBAUM, ’811

1 9 2

Networks (i i) w n t e d m s i t i q p
. .

An ATN i s a n RTN that has been extended in three ways:

(1) A s e t of x e n i s t e r s has been added; these c a n be used

to store information, such as partially formed

derivation trees (like the two shown in the Figure

3-32), between jumps to different networks.

(2) A r c s , aside f r o m being labeled by w o r d classes or

syntactic constructs, c a n have arbitrary tests

associated with t h e m that must be satisfied before the

arc i s taken. T h is makes i t possible to enforce such

constraints as verb agreement w i t h the subject: for

example, accept "he goes" but not "he go".

(3) C e r t a i n a c t i o n s m a y be "attached" t o a n arc, to be

executed w h e n e v e r it i s taken (usually to m o d i f y the

data structure returned).

ATNs have b e e n successfully used in q u e s t i o n answering

systems (LUNAR) [Woods, 73b], text generation systems (SHRDLU)

[Winograd, 7 2 1 , and speech understanding systems (W M) [Wolf &

W o o d s , 801.

O n e limitation of the ATN approach i s that the heavy

dependence o n syntax restricts the ability to handle

ungranxnatical (although m e a n i n g f u l) utterences.

193

There - i s another class of methods for understanding natural

language which do not use any explicit syntax, but rather depend

on a semantic abstraction of the problem domain. For instance,

such a semantic grarmrar for a system that talks about airline

reservations could have gramnatical classes like (DESTINATION,,

(FLIGHT,, (FLIGHT-TIME,, and s o on. This abstraction of concepts

along with knowledge of English key words (e.g., of) forms a

parser. This kind of technology has the advantage of being

efficient and easy to use in a variety of domains. I t works well

as long as the domain is reasonably bounded (like a front end to

a KBS) but would not be extensible to more unrestricted areas.

The LIFER [Hendrix, 7 7 1 and SOPHIE [Brown, et al, 8 3 1

systems use semantic granxnar based parsers.

3.5.2.6 D u t p w - LQ User

The other half o f the user interface is responsible for

output generation. This part is responsible f o r (a) accepting

the input from the user, (b) providing explanations and results

during a problem solving activity, and (c) answering questions

about the system itself. Of all these tasks, providing

explanations i s the most difficult. This is because:

(1) The explanation must be in terms of the knowledge

chunks, problem parameters, and inference rules that

194

were used to derive 'the results:

(2) The internal representation must be translated t o a

- . format suited for human understanding.

As was discussed in Section 3 . 1 . 5 , the ability of a KBS to

provide good explanations depend on the chunk size. I f the

knowledge chunks used are too small, the explanation is laborious

and may not be satisfactory: on the other hand, if the chunks are

t o o large the explanation mechanismmay be unnatural to the user.

Similarly, the ability to provide good explanations depends on

the selection of relevant or crucial inference rules for solving

the problem at hand (unless asked f o r additional details, in

which case the system should respond appropriately).

. . 3 . 5 . 2 . 7 Methods nf P r o v i d i u u ~ l a n a t i m

(a) Workspace Bepresentation

A s was discussed i n Section 3 . 4 , a workspace representation

offers a straightforward method for providing explanation. A

workspace representation stores the history o f the problem

solving activity. The elements in a workspace representation are

associated with the rule of inference and what rule was applied

on other workspace elements, knowledge chunks, confidence

factors, etc.

The explanation mechanism can start from the element(s) of

the workspace representing the problem solution and pick out the

195

sequence o f events that m o v e d the s y s t e m f r o m p r o b l e m definition

to solution. T h e advantage of this approach is that the

explanation m e c h a n i s m could use all the useful information stored

in a w o r k s p a c e including why a particular solution w a s selected
- .

a n d w h y others w e r e rejected. T h e disadvantage is that m o s t of

t h e information m a y n e v e r be used.

In this m e t h o d , the KS determines the m o s t relevant

information f o r a n explanation and a knowledge chunk can

o p t i o n a l l y have a n explanation scheme. During a p r o b l e m solving

a c t i v i t y , if a knowledge chunk i s used, the scheme (associated

with that chunk) is instantiated in i t s local environment to

p r o d u c e a n explanation. T h e advantages of this approach are:

(1) High-quality explanations c a n be produced because i t

i s possible to take idiosyncratic situations into

account.

(2) T h e explanation m e c h a n i s m c a n be used f o r other

purposes, for example, part o f the complaint

department for a frame (see S e c t i o n 3.2.7 "Frames").

T h e disadvantage of this m e t h o d i s that the expert w h o

p r o v i d e s knowledge to the s y s t e m m u s t consider the m e t h o d and

n e c e s s i t y o f explaining each knowledge chunk.

196

In this m e t h o d , a problem i s solved w i t hout keeping a

h i s t o r y in the workspace. If the user asks for a n explanation,

the m e t h o d m u s t re-solve the problem in a careful m o d e i.e., the

explanation m e c h a n i s m carefully watches the inference engine

during its re-solving activity and selects the events that are of

likely interest. This i s done by attaching a set of special

d e m o n s (see Section 3 . 2 . 3) that are triggered w h e n special

situations occur. At these points, the explanation m e c h a n i s m can

interrupt normal processing to perform the necessary data

collection.

- .

T h e advantage of this m e t h o d is a possible gain o f

efficiency if explanations are rarely requested. T h e

disadvantage o f this m e t h o d is the inefficiency introduced into

the inference engine so that demon-like execution could occur.

3.5.3 E x p e r t Interface

3.5.3.1 Jnt roduc t ion

Expert interface i s used by a d o m a i n expert, the provider of

k n o w l e d g e for a knowledge base and the s y s t e m implementors (or

k n o w l e d g e engineers) w h o are responsible for building the initial

k n o w l e d g e base (this interface i s a l s o called the l n o w l e d q e

a c a u i s i t i o n interface). Because of this, one c a n assume that the

user of the expert interface has some knowledge and awareness o f

the structure and functions o f the KBS. This, of course. d o e s

. . .

197

not imply that the expert is a progranmer; rather i t m e a n s that

he basically knows h o w knowledge i s represented (for example, by

IF-THEN production rules) or h o w uncertainty of knowledge i s

handled (for example, by certainty factors).

3.5.3.2 B a e r t Jnterface D s k s

The expert interface (or knowledge acquisition interface)

has three m a j o r tasks [Barnett & Bernstein, 771:

(1) Accepting knowledge in external format and translating

i t into internal format.

(2) Validating the consistency of new and old knowledge.

(3) Storing the knowledge into the KB.

T h i s three step process i s called -D - ilatiop.

T h e first task i s usually handled b y using a part of the

input m e c h a n i s m f r o m the user interface w h i c h can handle

restricted natural language.

T h e second task i s a more difficult one. T h i s involves

v a l i d a t i o n of consistency, and checking for redundancy, a task

complicated by the presence of confidence (o r credibility)

factors.

R e d u n d a n c y c a n b e checked by proving that n e w knowledge c a n

b e d e r i v e d f r o m the existing knowledge base. Inconsistency c a n

b e c h e c k e d by adding the n e w knowledge to the old knowledge and

proving something that i s patently false, say A & -A; if there i s

198

no inconsistency, the proof will fail; otherwise, the proof will

succeed. - F o r m o r e detailed accounts of the problems of

maintaining consistency, see [McDermott, 741. _ .

T h e third task, storing the n e w knowledge into the KB is

called -dation . This task becomes m o r e difficult if a

system has several knowledge sources and fact files in the KB.

Storing is a very complex process. This i s because the

internal (physical) representation i s usually a structure with

links between chunks, and the acquisition m e c h a n i s m must insert

the n e w chunk into this complex network.

For example, in MYCIN, each production rule that concludes

something about feature F is linked to every rule that tests F in

its antecedent (left hand side). Thus, the insertion (as w e l l as

deletio n and m o d i f i c a t i on) of knowledge chunks is a complex

operation that involves many things such a s confidence factors,

conflict resolution strategies, existing knowledge base contents,

etc.

In th e n e x t s e c t i o n , t h e knowledge a c q u i s t i o n p r o c e s s , w h i c h

i s a m a j o r bottleneck in developing KBSs, i s described.

OProcess . . . 3.5.4 -led- A c a n i s i t i o n

3.5.4.1 I p t r o d u c t i o n

T h e stages involved in the KA process c a n be characterized

as p r o b l e m identification, conceptualization, formalization,

199

implementation, and testing, a s shown in F i g u r e 3-33. In

reality, KA may not be as neat and well defined as the figure

' suggests.

. . 3.5.4.2 P r o b l rn Ident 1 f ica t i o n

T h i s s tage is further divided and discussed below.

i o n and Roles (a) P a r t i c i ~ w Identificat

T h e first thing that should be done before the KA process

c a n begin is the selection o f participants, and definition of

t h e i r roles. T h i s could m e a n the selection of a domain expert

a n d a single knowledge engineer. T h e KA process c a n also include

o t h e r participants: multiple d o m a i n experts, m u l t i p l e knowledge

engineers, a n d even interdisciplinary experts.

. . (b) P r o b l e m IdentLfication

T h e o b j e c t i v e during this phase is to characterize the

p r o b l e m and i t s supporting knowledge structures so that the

development of the KB c a n begin. Many iterations m a y be needed

d u r i n g this phase because a knowledge engineer and/or domain

expert may f i n d that the initial problem considered i s too large

or unwieldy for the resources available. At the end o f this

p h a s e , both the knowledge engineer and the d o m a i n expert m u s t

a r r i v e at a final, informal description they c a n agree on for the

p r o b l e m identification.

200

201

. . (c) B e s o u r c e m t i f i c a t i u

D u r i n g - this phase, the knowledge engineer and domain expert

must use various sources to obtain knowledge relevant to building .

the KBS. For the d o m a i n expert, these include textbooks,

journals, past p r o b l e m solving experience, etc. For the

knowledge engineer the sources include experience o n analogous

problems a n d knowledge about methods, representations, and tools

for building KBSs.

3.5.4.3 ConceDtualizat i o n Stape

D u r i n g this stage, k e y concepts and relations (that w e r e

m e n t i o n e d during the identification stage) are m a d e explicit.

T h e knowledge engineer represents these concepts and relations in

a d i a g r a m that serves a s a base f o r the prototype system. Some

o f the questions that need to be answered before proceeding with

the conceptualization process are:

(1) W h a t d a t a types a r e available?

(2) W h a t i s g i v e n a n d w h a t i s inferred?

(3) H o w are the objects in the d o m a i n related?

(4) C a n you d i a g r a m a hierarchy and label causal

relations, s e t inclusion, part or w h o l e relations,

etc.? W h a t does i t look like?

(5) C a n you identify and separate the knowledge needed for

solving a p r o b l e m f r o m the knowledge used to justify a

solution?

202

This stage also involves repeated interactions between the

knowledge engineer and the domain expert.

3 . 5 . 4 . 4 Formalization - S t a P e

This stage involves mapping the key concepts, subproblems,

during and information flow characteristics isolated

conceptualization into more formal representations based on

various knowledge engineering tools and languages.

During this phase, the knowledge engineer takes an active

role, telling the domain expert about the existing tools,

representations, and problem types that seem to match the problem

at hand. During this phase, the knowledge engineer must evaluate

the disadvantages of mismatches that will occur when a single

tool i s chosen and select the one with the least overall

disadvantages. A t the end o f this phase, a s e t of partial

specifications describing how the problem can be represented

within the chosen tool or framework should be completed.

3 . 5 . 4 . 5 Imp1 ementat ion Stape

The domain knowledge made explicit during the formalization

stage specifies the contents of the data structures, the

inference rules, and the control strategies. The tool o r

representation framework chosen specifies their form. Thus the

implementation phase involves mapping this formalized knowledge

into the representational framework associated with the tool

203

chosen, i.e., the implementation phase involves the development

of a prototype KBS.

T h e prototype KBS is implemented by using w h a t e v e r knowledge

engineering aids are available f o r the chosen representation (f o r

example, a knowledge base editor). If the existing tools are

inadequate and/or inappropriate, i t m a y be necessary to develop

n e w tools.

3.5.4.6 T e s t ing StaPe

This stage involves evaluating the prototype s y s t e m and the

representational forms used to implement i t . O n c e the s ystem

performs w e l l w i t h two or three examples, i t s h o u l d be tested

with a variety o f complex examples to determine the weaknesses in

the knowledge base and inference structure. T h e s e weaknesses

should be corrected, and a revised prototype should be developed.

T h i s m a y involve repeating one o r m o r e of the phases discussed

above .
F o r a m o r e detailed discussion o n the knowledge acquistion

process, see [Hayes-Roth, e t al, 8 3 1 , o n w h i c h the above

d i s c u s s i o n is based.

T h e r e are m a n y m a j o r difficulties in acquiring knowledge f o r

a KBS:

204

(1) O n e o f the m o s t outstanding problems i s the

representational mismatch, the difference between the

w a y a human expert expresses knowledge and the w a y i t

m u s t be represented in the KBS environment. In recent
- .

y e a r s , researchers have focussed on developing KA

tools that could decrease the representational

mismatch. O n e method used in some systems (example:

ROSIE [Fain, et al, 8 1 1) to decrease this m i s m a t c h i s

t o a l l o w the expert to converse w i t h the s y s t e m in

natural language.

(2) A n o t h e r major difficulty in KA is verbalization by the

expert. I t i s almost always difficult for the human

expert to describe the knowledge in a formal way.

Therefore, in order to build a KBS i t is n e c e s s a ry for

the expert to rethink his m e t h o d s and procedures. O n e

m e t h o d for starting this process is the protocol

LuLd2L.

(A protocol study is a process in w h i c h a n expert i s

g i v e n a p r o b l e m to solve, and the knowledge engineer

observes and/or records the expert’s behavior o r asks

f o r explanations of various steps. T h e knowledge

engineer t h e n analyzes the collected information and

tries to determine general patterns, knowledge used,

a n d principles of reasoning.)

20s

(3) O t h e r major difficulties in the KA process result

because of limitations on current technology.

Representation languages and tools used by current

systems are limited in their expressive capabilities.
- .

S i m i l a r l y , techniques to a l l o w systems to be

gracefully extended are very limited.

T h e above mentioned problems - m i s m a t c h , formalization,

expression, and extendability - all contribute to w h a t is known

as the knowledge acquisition bottleneck. C u r r e n t l y , this is one

of the very active areas of research in building expert systems.

Chapter 4

KBS BUILDING TOOLS AND LANGUAGES

4 . 1 Jntroductioq

At the moment, construction of KBSs and experimentation with

them are both very expensive and time consuming. Recognizing

this, researchers have recently begun developing progranxning

languages and tools for building KBSs. While these tools and

languages are just coming into use and are certain to undergo

further development, they promise to reduce significantly the.

prograxrxning effort needed to develop a new system as well as

modify i t [Duda &Gashing, 8 1 1 .

These languages and tools can be categorized into four

different groups (based on [Hayes-Roth, et a l , 8 3 1) :

(1) General purpose programning languages.

(2) Skeletal systems.

(3) General purpose representation languages.

(4) Computer-aided design tools for KBSs.

The discussion in this chapter i s generally based on

[Hayes-Roth, et al, 8 3 1 .

206

207

Some AI programming languages have very powerful features

and can be used to implement a system from "scratch". LISP. - . _

developed by McCarthy in 1 9 5 8 , is chosen for much work in A I .

LISP has some advanced features like: symbol manipulation, list

processing, and recursion. These features provide a high level

conception o f data and control. In addition, the programner can

be freed from certain burdens (like how to manage memory) that

could slow down the experimental process.

There are at least six other AI languages, that have been

developed during the past two decades:

PLANNER [Hewitt, 711

CONNIVER [Sussman, e t al, 721

QLISP [Green, 6 9 1

SAIL [Feldman, et al, 721

POP-2 [Popplestone, 671

FUZZY [Le Faivre. 771

Except for LISP, none o f these languages are in widespread

use. There are two comnonly used LISP dialects, INTERLISP,

developed at BBN and XEROX [Teitelman, 7 8 1 , and MACLISP,

developed at MIT. The choice of one of them "is probably more a

matter of personal preference and availability than of clear

technical superiority", although advocates of MACLISP and

INTERLISP often s e e m to be claiming that superiority [Hayes-Roth,

.
208

et al, 8 3 1 .

As was discussed earlier, the two most important components

in a KBS are the inference engine and the knowledge base (or a

set of rules). Any language which is chosen for construction of

a KBS should provide facilities for both.

Let us first consider the representation of a knowledge base

(a body of rules). Depending on the general framework, each rule

should satisfy a set o f conditions (which are relevant) and

perform a set of actions (when invoked). For example, consider

the following statement or informal rule (refer the example in

Section 3 . 2 . 5)

”Low fan belt tension causes alternator output to be low.”

This statement can be represented as

(I F (CAUSE BELT-TENSION L W)

THEN (CONSEQUENCE ALTERNATOR-OUTPUT LOW)

1

The above rule can b e represented more generally and

formally in a Backus-Naur form (BNF) a s follows:

<rule> i : = (I F {<antecedent’) THEN {<consequent>))

(antecedent’ : : = ‘associative triple,

<consequent, : : = <associative triple’

<associative triple, : := (<attribute> (object’ <value>)

2 0 9

w h e r e cattribute,, <object’, and < v a l u e > w o u l d be domain specific

terms. Using this type of formal rule language, a knowledge base

(or body of r u l e s) c a n be constructed.

Now let us consider the second aspect: the inference engine.

Ideally the same IE could be used for various domains, by just

changing the rule set. F o r example, the following i s a simple

b a ckward chaining inference engine (discussed in detail in

S e c t i o n 3 . 3 . 3) for the rule language given above.

T o test w h e t h e r hypothesis X is true:

if X is stored in the global data base

then X i s true

else if there are any rules w h o s e consequents

include X

th e n f o r each such rule:

if all antecedents are true

t h e n add all consequents to the global d a t a base

and X is t r u e

else if the user says that X i s true

t h e n X is true

else X is false.

N o t e h o w back-chaining is implemented above. Checking the

antecedents of a rule causes the inference engine to be invoked

recursively.

T h e above example and discussion i s provided to give a

210

flavor of AI languages and no attempt is made to describe them in

detail. A thorough introduction to some AI programning language

features can be found in the excellent book “Artificial

Intelligence Programning” by Chairniak, Riesbeck, and McDermott
- . _

[Chairniak, et al, 791.

4 . 1 . 2 Skeletal SvstemS

EMYCIN, EXPERT, and KAS are examples of this category. In

these systems, domain specific knowledge is explicitly

represented as rules in a K B , rather than coding in an inference

engine. This clear separation of the KB and the IE permits the

KB (or domain specific rules in the KB) to be replaced with

another KB (with different domain specific rules).

For example, EMYCIN (f o r Essential MYCIN) i s the MYCIN

system without the medical knowledge (specialized knowledge o f

meningitis as well as some general knowledge about medicine).

Using EMYCIN, two experimental systems were developed: PUFF

[Fagan, et al,, 791 and SACON [Bennet & Englemore, 791.

PUFF was built by replacing MYCIN’s infectious disease rules

by rules for pulmonary function diagnosis and SACONwas built for

psycho-pharmico logy.

Even though the above mentioned systems are reported to be

successful, building “general systems” - systems that can be

applied to another domain merely by removing the rules for a

given domain and substituting rules f o r the new one - is, in

2 1 1

practice, not that simple. The following are among the problems

that may occur [Hayes-Roth, et al, 8 3 1 :

(1) The old framework may be inappropriate to the new .

task. This is both the most likely and most serious

problem.

(2) The control structure embodied in the IE may not

sufficiently match the new expert’s way of solving

problems.

(3) The old rule language may be inappropriate to the new

task.

(4) There may be task specific knowledge hidden in the old

system in unrecognized ways.

OPS5, HEARSAY-111, RLL, and ROSIE fall into this category.

These tools (or languages) are less constrained than skeletal

systems, since they are not as closely tied to a particular

framework. Thus, they allow for a wider variety of control

structures and can be applied t o a broader range of tasks, though

the process of applying them may be more difficult than with

skeletal systems.

For example, OPS5 [Forgy, 8 0 1 , incorporates a general

control and representation mechanism and i t i s not biased towards

212

a particular problem solving strategies or representation

schemes. OPS5 has been used for a variety of applications in the

area of A I and cognitive psychology, as well as building R1, the

expert system for configuring VAX computers [McDermott, 8 0 1 .
- .

In addition, OPS5 provides other facilities: the OPSS

interpreter provides the programner with a conventional

interactive programning environment much like that of a typical

LISP interpreter - t o trace and break runs, to examine the state

of the system, to change the system in the middle of a run, and

s o on.

4 . 1 . 4 b D u t e r Aided D e s i g n Tools fnr Build irlg K B h

AGE [Nii & Aiello, 7 9 1 falls into this category.

Specifically designed to allow the implementation of broader

spectrum of KBs, AGE gives the designer (user) a set o f a

separate, interconnectable preprogramned modules for selecting a

framework, implementing the KB, IE, and the data base. Thus AGE

differs from other skeletal systems in one important dimension:

i t provides an environment in which the designer can choose o r

specify a variety of knowledge representations and processing

methods. For example, an AGE user i s able to build and run a

program that behaves in ways similar t o a program built using

EMYCIN o r one built using HEARSAY-111. AGE also contains

knowledge about its own facilities, procedures, a tutor subset

(that lets the user browse online manual), and a design subset

213

(that provides online advise on the AGE itself).

4 . 2 -Studies

This section presents detailed description o f three tools

(or languages) mentioned in the previous section. They are:

EMYCIN (skeletal system)

HEARSAY-I11 (general purpose representation language)

AGE (computer aided design tool)

The discussion is primarily based on [Hayes-Roth, e t al,

8 3 1 , and the references identified with the respective systems.

4 . 2 . 1

4 . 2 . 1 . 1 Overv iew nf

EMYCIN is basically a domain-independent version o f MYCIN

i.e., a MYCIN system without the medical knowledge. EMYCIN is a

skeletal system f o r developing a consultation program that can

request data about a case and provide an interpretation or

analysis. I t is particularly well suited to deductive problems

such as fault diagnosis, in which a large body of potentially

unreliable input data (symptoms, laboratory tests) is available

and the solution space o f possible diagnoses can be enumerated.

EMYCIN helps a designer build a new KB, and thus a new KBS.

The problem specific knowledge can be represented in MYCIN-like

rule language and EMYCIN allows the MYCIN inference engine to be

214

applied to a n e w KBS. This provides the n e w KBS w i t h MYCIN’s

versatile explanation facility.

In a d d i t i o n to these, the EMYCIN system contains a KB editor

to aid in debugging an emerging KB. All o f the components are
-..

shown schematically in Figure 4-1 (f r o m [Buchanan & Duda, 8 3 1) .

4.2.1.2 U o w l e d p e BeDresentat i o n in BlXCIB

The knowledge in RvlYCIN i s represented as production rules

(see S e c t i o n 3.2.5, “Production Rules”) in the following rule

language:

rule : := (IF < a n t e c e d e n t) THEN <action, (ELSE < a c t i o n >))

< a n t e c e d e n t > : : = (AND { < c o n d i t i o n >))

< c o n d i t i o n) : := (OR {‘condition,)) I

((p r e d i c a t e ’ < a s s o c i a t i v e - t r i p l e >)

<associative-triple, : : = ((a t t r i b u t e) < o b j e c t > < v a l u e >)

< a c t i o n > : := ({ < c o n s e q u e n t >) I {(procedure’)

< c o n s e q u e n t > ::= {<associative-triple> ccertainty-factor>)

A rule links a n antecedent to one action if the antecedent

is true, a n d (optionally) to another, if the antecedent i s false.

The antecedent i s always the conjunction of one or m o r e

conditions. A condition i s either

(1) T h e disjunction of one or m o r e conditions or

(2) A predicate applied to a n attribute-object-value

triple (predicate c a n include negation).

215

t
v)
s-
L

8 W
Uv,

w u u
a

3:
c

W

5
4

.p

a
X
W

L 3
Xv) B W

t
v, z u

v,-

3
M

216

Thus, the antecedent i s an arbitrary Boolean combination of

predicates o f associative triples.

_ . For example, one o f the MYCIN's bacterial infection rule is:

I F (SAND (SAME (CNTXT INFECT PR I M A R Y - B A m E R M A)

(BEMBF (CNTXT SITE STERILE-SITES)

(SAME (CNTXT PORTAL GI)))

THEN (CONCLUDE (CNIXT IDENT BACTEROIDS TALLY . 7))

In English, the antecedent of the rule (everything between

IF and THEN) is true i f and only if:

(1) The infection i s primary-bacteremia, and

(2) The s i t e of culture i s one o f the sterile sites, and

(3) The suspected portal of entry o f the organism is the

gastrointestinal (G I) tract.

The objects in the associative triples (called "contextn in

the EMYCIN terminology) are variables corresponding to domain

entities. They are organized into a simple hierarchy called a

context- (Figure 4 - 2) . This serves several purposes:

(1) Binding of free variables in a rule are established by

the context in which the rule is invoked with the

standard access to contexts which are i t s ancestors.

217

PAT I ENT-1

I NFECT i 0n-2 I NFECT I ON-1

CULTURE-1

/
ORGAN I SM-1

FIGURE 4-2, A SAMPLE CONTEXT TREE

BASED ON [DAVIS, ET AL, ‘811

218

(2) Since this tree is intended to reflect the

-relationships of objects in the domain, i t helps

structure the consultation in ways familiar to the

user.

For example, in the MYCIN domain, objects might be

patient-1, infection-1, infection-2, culture-1, culture-2,

culture-3, organism-1, organism-2, etc. The context tree (Figure

4 - 2) would indicate that ORGANISME belong to CULTURES, CULTURES

belong to INFEnIONS, and INFECTIONS belong to PATIENTS. Thus a

context tree provides some of the inheritance mechanisms of a

f r ame r e p r e s e n t a t i on.

To acconmodate uncertainty, EMYCIN associates a certainty

factor (see Section 3.1.6) with every attribute-object-value

triple. This number ranges from -1 (when the triple represents a

false assertion) through 0 (no opinion) to - 1 (the assertion is

known to be true). Predicate such as SAME can either evaluate to

T (true) o r some certainty interval (such as 0 . 2 to 1) or can be

fuzzy-set functions that indicate a degree of truth. As in

fuzzy-set theory, AND returns the minimum and OR returns the

maximum of the certainty values to i t s arguments [Zadeh, 7 5 1 . A

rule is considered "true" only when the final certainty is

greater than some threshold (typically 0 . 2) . and will be treated

as "false" if its final certainty is less than another threshold

(typically -0.2).

The action part o f a rule either updates (modifies) the

219

certainty of the specified consequents or evaluates a set o f

attached procedures. In modifying the certainty, the s y s t e m

combines:

(1) T h e certainty o f the antecedent.

(2) T h e present certainty of consequent.

(3) T h e certainty factor associated with the rule

according to the CF formulas of Shortliffe and

Buchanan [Shortliffe & Buchanan, 7 5 1 .

4 . 2 . 1 . 3 mFMYCINInferenceEnPlne

0

EMYCIN us e s backward chaining as a control strategy. Its

initial goal i s to d e t e r m i ne the value o f a top level goal

attribute. Subsequently, EMYCIN works on the goal o f

establishing the value of the attribute of some object. T h i s

process continues with a precomputed rule s e t (whose consequents

are known t o bear o n that goal) until either the value is

established with complete certainty o r exhausts the rule set. If

no value can be deduced, i t resorts to asking the user for the

va 1 ue .
T o apply (or execute) a rule, E M Y C I N m u s t first establish

the truth of- its antecedent, which requires determining the

certainty of each of i t s conditions. To determine the certainty

of each o f i t s conditions, the s y s t e m (typically) has to

establish the value o f other attributes of objects. This m e a n s

that the s y s t e m sets u p subgoals that are addressed by using the

220

same m e c h a n i s m recursively.

. . . 4.2.1.4 W C I N Facilities

O n e of the m a j o r benefits of using EMYCIN to build other

MYCIN-like systems is i t s (EMYCIN's) explanation facilities. I t

a l l o w s a u ser to examine both the reasons for the conclusions

reached in a particular session, and its rule set in the

knowledge base. This c a n be done by simple comnands like "WHY"

a n d "m.
In addition, as already mentioned, EMYCIN h a s a knowledge

base editor. T h e KB editor checks syntactic correctness of the

n e w rules entered and sees that they d o not contradict or subsume

existing rules. A contradiction occurs w h e n two rules with the

same antecedents have conflicting consequents; subsumption occurs

w h e n the antecedent of one rule i s a subset o f that of another

a n d their consequents are the same [Hayes-Roth, et a l , 8 3 1 .

h

EMYCIN also provides valuable tracing and debugging

facilities. A n d , finally, libraries of t e s t c a s e s c a n also be

maintained.

4.2.2 -SAY IIL

HEARSAY-I11 i s a general purpose knowledge representation

tool. It a l s o provides a domain-independent framework f o r

221

building KBSs. The architecture of HEARSAY-I11 is based on the

architecture of HEARSAY-I [Reddy, et al, 7 3 1 , and HEARSAY-I1

[Erman, et al, 8 0 1 , which are speech understanding systems

developed at Carnegie-Mellon University under a DARPA project.

Specifically, HEARSAY-111 uses HEARSAY-11’s concepts of modular

knowledge sources and “blackboard” (which provides system wide

comnunication, see Section 3 . 4 . 2) . However, HEARSAY-I11 is

specifically not a speech understanding system.

The design goals for HEARSAY-I11 were to develop

representation and control facilities with which a user could

construct and experiment with a KBS for a chosen domain. Some.

salient features of HEARSAY-I1 are:

(1) I t supports codification of diverse sources of

knowledge. HEARSAY-I11 is not restricted to any

particular class of application domains, and in fact,

supports various types of knowledge from various

application domains.

(2) I t supports application of these diverse sources of

knowledge. HEARSAY-111 allows flexible coordination

of knowledge sources during a problem solving

activity.

(3) I t represents and manipulates competing solutions that

could be constructed incrementally.

222

(4) It reasons about partial solutions, i.e., HEARSAY-I11

 upp ports the ability to reason and manipulate the

solutions during various stages of their construction. - .

(5) I t applies domain dependent consistency constraints to

the competing partial solutions, which results in

reducing the search space.

(6) It supports long-term, large-system development. In

particular, HEARSAY-I11 supports experimentation with

varying knowledge for the application domain and

varying schemes for applying that knowledge. ,.

4 . 2 . 2 . 2 -owled= ReDresen t a t i u h -SAY - 111

(a) TB_e Ynderlving Pelational DataBase

HEARSAY-111 consists of a relational data base system and

i t s corresponding control facilities. The data base language i s

called AP3 [Goldman, 7 8 3 , and i s embedded in INTERLISP. An AP3

data base provides strong typing on assertion, retrieval, and

parameter passing in function calls which can be used by a user

of HEARSAY-111 f o r modeling in a specific domain. The HEARSAY

blackboard and all publicly accessible HEARSAY-I11 data

structures are represented in the AP3 data base.

AP3 also makes available to HEARSAY-I11 applications a

context mechanism. This context mechanism allows reasoning along

independent paths, which may arise both from a choice among

223

several competing KSs and from a choice among several competing

partial solutions.

Finally, A p 3 also provides facilities for a constraint

mechanism. Any reasoning mechanism that produces a constraint

violation results in marking the context (in which the reasoning

was performed) as poisoned.

- . _

The central conmunication medium in HEARSAY-111 is the

"blackboard". An application program uses the blackboard as a

repository for a domain model, for representation of partial.

solutions, and for representation of pending activities. The

blackboard i s segmented into two parts:

(1) Domain blackboard

(2) Scheduling blackboard

The i n B l a c k b U is intended as the s i t e of competence

reasoning (i-e., for reasoning within the task domain), and the

scheduling b l a c k b o a r d is intended as the s i t e for performance

reasoning (i-e., for reasoning about scheduling). The user can

further subdivide each of these blackboards.

Blackboard units are fundamental components of the

representations built by application programs in HEARSAY-111.

Every unit has a structure. The structures of units are used to

represent unresolved decisions explicitly and such sets are

called cho i c e sets.

2 2 4

HEARSAY-I11 provides two mechanisms for resolving the

ambiguity b y a choice set:

(1) Deduce-mode choose.

(2) Assume-mode choose.

An application p r o g r a m m a y perform a $educe - m o d e d o o s e w h e n

i t h a s conclusive evidence that one alternative is the correct

solution for the p r o b l e m represented by the choice set and that

there will be n o desire to retract that choice based on further

evidence. In this case the choice set is replaced by the

alternative (their properties are m e r g e d) in the context in which..

the choice i s m a d e . In deduce m o d e , the blackboard appears as if

this choice set never existed before.

An ass- - _choose also replaces the choice set with a

unit that represents a m e r g e of properties of the choice set and

the c h o s e n alternative. T h e difference i s that a n assume m o d e

choice m a k e s these changes in a newly created context f r o m the

one i n which the choice i s made. The b l a c k b o a r d structure in the

n e w context i s identical to that resulting f r o m a deduce-mode

choice. T h e choice s t i l l exists in the earlier context with i t s

structure m o d i f i e d only to eliminate the alternative just chosen.

In this w a y , if subsequent reasoning indicates that this

alternative may not be best, i t i s possible to return to the

original context and select a different alternative.

225

Inference- 4 . 2 . 2 . 3 HEMSAY - 111

The key functions of generating, combining, and evaluating

hypothetical interpretations are performed by independent - .

programs called "knowledge sourcesn (KSs). Each KS can be

schematized as a condition-action type production rule; i t

reacts to blackboard changes produced by other KS executions and

in turn produces new changes.

To define a KS, the user provides a t r i p n e r i u pattern,

ediate code, and a mode. Whenever the pattern is matchable on

the blackboard, HEARSAY-111 creates an activat ion record for the

KS. At the point the activation record i s created, the

immediate code of the K S is executed. At some subsequent time,

the system's base schedule (see below) may c a l l the HEARSAY-I11

Execute action on the activation record. The result o f this is

that the body of K S is run (executed) in the triggering context

and with the pattern variables instantiated.

Each K S execution is indivisible; i t runs to completion and

is not interrupted for the execution o f any other KS activation.

This insulates the KS execution and simplifies the coding of the

body; there need be no concern that during a KS execution

anything on the blackboard will be modified except as effected by

the KS itself.

Scheduling

Frequently, many KS activation records vie for execution and

226

HEARSAY-I11 is intended for use in domains in which KS scheduling

schemes are likely to be complex and in which one might need to

experiment freely with various schemes.

The scheduling blackboard at the end o f each KS execution,

determines which KS activation to execute next. Some KSs (known

as scheduling KSs), mag make changes on the scheduling blackboard

to facilitate the selection of activation records. Scheduling

KSs may respond t o changes both on the domain blackboard and on

the scheduling blackboard, including creation o f activation

records. The scheduling blackboard is the data base for solving

the scheduling problem.

4 . 2 . 3 . 1 Dverv iew Q€ AGE

The following discussion is a simplified version of one

presented in [Hayes-Roth, et al, 8 3 1 .

AGE is a software tool specifically designed to allow the

implementation o f a broader spectrum o f KBSs. AGE gives the

designer a s e t of separate, interconnetable, preprogramned

modules (also known as components o r building blocks) for

selecting a framework, implementing the knowledge base, inference

engine, and the data base.

A component is a collection of LISP functions and variables

that support conceptual, as well a s concrete, entities. For

example, the production - rule com~onent consists of:

(1) A rule interpreter that supports syntactic and

semantic description of production rule

representation, and

(2) Strategies for rule selection and execution.

The components have been preprogramned, but the designer of

the KBS (or user of AGE) could m o d i f y or replace them as long a s

the changes c o n f o r m to the definitional constraints.

T h e components in AGE have been carefully selected, defined,

and m o d u l a r l y programned to b e usable in various combinations.

A n d using different combinations makes i t possible to construct..

programs that display different problem solving behaviors.

One particular combination (or framework) i s blackboard

n. The other is backcha in framework.

4.2.3.2 B l a c k b o a r d Framework

A blackboard-based p r o g r a m w r i t t e n in AGE consists of three

m a j o r components:

(1) T h e blackboard.

(2) T h e knowledge base.

(3) T h e control.

(a) B l a c k b o a r d

The blackboard concept i s originated f r o m the design of

HEARSAY-11, a speech understanding s y s t e m [Erman, et al, 801, and

2 2 8

i t is designed to hold input data, intermediate results and

solutions. I t is augmented with a variety of control and

representation concepts. Some of these augmentations include

production rules and object-oriented representations of

knowledge, an extended blackboard, and a scheme for generating

and processing expectations and goals.

The knowledge of the problem domain can be represented in

two different ways:

(1) The description of the objects, both conceptual and

actual.

(2) The relationships among the objects.

The knowledge to use these facts and t h e information on the

blackboard is represented as a set of production rules. A set of

related rules i s called (in AGE terminology) knowledge sources

(KSs 1 .

Each production rule consists o f a left-hand side (LHS) and

a right-hand-side (RHS) . The LHS specifies a s e t of conditions

or patterns for the applicability of the rule. The applicability

of a rule here means that either all of the specified conditions

must be true, or only that some need to be true. Because of the

wide range of possibilities of defining applicability, AGE asks

the user to define it in the form of a function t o serve as the

229

LHS Evaluator. An example of LHS Evaluator i s

all-conditions-must-be-true.

T h e RHS represents the implication to b e drawn, under the

situation specified in the LHS. These implications are
- . _

represented in the f o r m of changes to be m a d e to the hypothesis

structure (a data structure that holds input data, intermediate

results, and final results), o r to the knowledge base.

In AGE several components are grouped under the heading of

control. T h e y are as follows:

(i) mInDut m o n e n t : The user has to specify the

format and the names of the input data, and the manner

in w h i c h the data are to be acquired through this

input component.

n i t i a l i z a t i o n ComDonent: This c ompone n t

processes the input data and returns the name of the

first KS to b e invoked.

. . (i i)

(i i i) U r n e l U t r o L b D o n e m : This component

specifies the inference m e c h a n i s m s to b e used

(discussed below).

(i v) m ~ e t i o n * -: T h i s component specifies

the condition under w h i c h the p r o g r a m will terminate;

for example, the occurrence of some specified event.

230

(V I -post - Process i q g m o n e n _ t : This component is for

processing after the termination of rule execution;

for example, printing an hypothesis or printing an

explanation.

The primary functions of kernel control are:

(1) To select an item on the blackboard to be processed

next (done by inference generation subcomponent), and

(2) To invoke KSs appropriate to that item and consistent.

with the goal of the program (by focus of attention

subcomponent).

A more detailed description of inference generation and

focus of attention subcomponents can be found in [Hayes-Roth. et

al. 8 3 1 .

Because the control mechanisms have many details that are

potentially confusing to novice user, AGE provides two rather

simple, prepackaged control structures called control macros.

They are useful for event driven macro and expectation driven

macro control.

Control (e) Event - Driven

Event-driven control is a two step process:

231

(1) A rule modifies the hypothesis elements or UNITS data

base and causes an event, with associated event token

(which sumnarizes the actions to be taken by the

rules).

(2) If the focused event name (assigned by the user)

matches a precondition of a KS, then invoke that KS.

Loop back to (1).

Control (f) UDectation - Driven

Expectation driven control is a three step process:

(1) A rule generates expectation(s).

(2) If an expectation is met, the hypothesis elements or

UNITS are modified as specified. This action

generates an event with an associated event token.

(3) I f the focused event name matches a pre-condition of a

K S , that KS is invoked. Else l o o p back to (1) .

A more detailed description of event driven and expectation

driven macros i s presented in [Hayes-Roth, et al, 8 3 1 .

. . . 4 . 2 . 3 . 3 BGE Facilltie S

Currently AGE is designed to be usable by persons

knowledgeable in the appropriate uses of various AI problem

solving methods. The user has to translate a problem into an

232

appropriate framework. O n c e a framework has been chosen, AGE

provides a detailed specification o f each of the components.

T h e AGE sy s t e m consists of four m a j o r subsystems:

(a) D e s i g n S u b s v s t a : The d e s i g n subsystem guides the

u s e r in the design and construction of a application

p r o g r a m that fits a predefined framework.

(b) = E d i t o r : The knowledge base editor help the user

enter detailed domain specific information as well as

control information for e a c h of the components.

(c) InterDreter Subsvstem: T h e interpreter subsystem

executes the user p r o g r a m and provides a variety of

debugging aids.

(d) h o l a i n e r Subsvstem: T h e explainer s u b s y s t e m provides

a complete trace of the execution of the user program.

Chapter 5

APPLICATION CONSIDERATIONS

5.1 I n t r o d u c t i o n

T h o u g h there exists a large amount of literature about

existing a n d developing KBS applications, the selection process

I for e a c h n e w application requires consideration of a v a r i e t y of

reasons. O v e r the years, the knowledge engineers have developed

many heuristics or intuitions. In m a n y w a y s , these are similar

to guidelines for building other types o f software systems. They-.

have b e e n divided here into three m a j o r groups. First, a set of

considerations that address the issues of the p r o b l e m d o m a i n and

the experts and users of the system that i s developed f o r that

p r o b l e m domain. N e x t , are the technology considerations that

focus o n the availability of technology f o r implementing a KBS.

Finally, a r e the considerations that determine w h e t h e r or not the

development environment and user environment are properly

supportive.

T h e discussion i s based on [Buchanan, 7 5 1 , [Barnett &

Bernstein, 7 7 1 , and [Hayes-Roth, e t al, 831.

233

234

. . 5 . 2 ' Initial Considerati-

In this section some major considerations that should be

taken into account - before a decision to build KBS for a - ' -

particular application is made - are discussed.

. . 5 . 2 . 1 Task Suitabilitv

Does the problem have a closed form solution? If a closed

form solution exists and that can be implemented using other

computer techniques, then KBS technology is probably not

suitable. On the other hand, those other techniques may be

computationally very inefficient because t h e number of steps

involved or because of the number of possibilties (combinatorial

explosion) are very high. In such a case, KBS technology can be

considered.

I s the problem too difficult or too easy? A task can be

said to be "too easy", if i t "takes only few minutes" and "too

hard" if i t requires "few months" [Hayes-Roth, et al, 8 3 1 .

Though the tools and techniques to build expert systems will

improve, presently i t is wiser to build a system that is an

expert in performing a task T in a domain D, than building a

system that i s an expert in domain D .

235

Does the task require considerable conmon sense knowledge?

KBS are not general purpose problem solvers and no current system

is adept at conmon sense reasoning. As such, i t is extremely

difficult to build a system that has expertise in several

doma ins.

pfExDert . . 5 . 2 . 2 Availabilitv

One o f the preconditions for building a KBS is the existence

o f an expert (or group o f experts) in the domain being

considered. I f there is no expert or no one who is recognized as

outstanding performer f o r the type o f problems involved, building

KBS in that domain is probably not worth considering.

The expert should be willing t o give long t e r m comnitment

and should become an integral part o f the developing team. At

the same time, he should not be expected to become an expert in

computer science and KBS technology. Knowledge engineer should

be willing to meet the expert at least half way.

p,rith JJu2 prehlem? Is a kn-u w e e r -liar . . (c)

The knowledge engineer should read relevent reports and talk

236

to other experts to learn as much about the problem domain as

possible. This not only establishes a good conmunication between

expert and knowledge engineer, but also simplifies the task o f

identifying the problem and expressing key concepts and relations

explicitly.

Process 5.2.3 Knowledge Acauisitiop . . .

There are several ways of imparting domain specific

knowledge to the KBS. A f e w them are discussed below:

The knowledge engineer should have extensive discussions

with the expert in identifying the roles of participants in the

knowledge acquisition process, define the problem to be attacked,

and characterize goals and objectives of building a KBS. He

should also watch (record) the expert’s method(s) of problem

solving; application(s) of formulas, heuristics, and the

reduction process. This i s known as a protocol studv. One

advantage of this approach is the ability to separate knowledge

from the reasoning mechanism.

(b) Jhoert directlv &Dart ing into h- base:

With this apporach, the expert can directly interact with

the KBS through a knowledge base editor, and impart knowledge

directly into the KB without intervention from any one else. The

assumptions are that the:

237

(1) Expert is familiar with the KB editor, and

(2) Expert is able to translate his expertise into the

(usually) restricted syntax statements, and the expert _ '

has s ome knowledge about specific design

specifications.

The above process may require, initially, interaction with

the knowledge engineer.

TEIRESIAS is the best example for this type of approach.

TEIRESIAS is a program that assists the expert to transfer his

expertise to the K B . The expert carries a dialog with TEIRESIAS..

in a subset of natural language [Davis & Lenat, 8 2 1 .

With this approach a separate system could be built to

abstract the knowledge from the observed data and experimental

results. This approach i s similar to one taken in META-DENDRAL,

which could infer rules about domain from the data.

The major problem with this approach i s providing the

necessary constraints that would limit the system to generating

only rules (o r knowledge) that i s plausible within theory of the

domain instead of all possible ones. Those rules should, of

course, be consistent.

With this approch (described in [Badre, 7 3 1 1 , the knowledge

acquisition mechanism should be able to read textbooks, journals,

238

etc. and extract the useful knowledge and transfer i t into the

KB. This approach may become feasible in the future.

5.2.4 APreement With U .Theorv

A n o t h e r important factor that should b e taken into

consideration i s w h e t h e r o r not there exists a n underlying theory

that i s agreed upon by m a n y professionals in that domain, and

w h e t h e r there i s general agreement o n w h a t i s a correct result or

answer.

I t is highly unlikely that a KBS will be successful if

there exists m a n y competing or even conflicting theories for a .

particular p r o b l e m domain.

In relation to some of the knowledge acquisition methods

discussed above, one has to determine whether the expert has a

m o d e l in his m i n d to solve the problem(s1. W h e n the expert i s

solving a problem, he should be able to express the steps,

processes, rationale, heuristics, etc. in a reasonably orderly

m a n n e r .

5.2.6 U o e r t ’ s P r i n c i ~ l e s nf Beas-

O n e has to observe whether or not the expert approaches e a c h

p r o b l e m in a n ad hoc m a n n e r , or applies a s e t o f rules,

heuristics and p r o b l e m reduction processes that rapidly focus his

a t t e n t i o n on the k e y subproblems. For a KBS to be successful, i t

239

is n e c e s s a r y that the expert should f o l l o w some orderly reasoning

process w h e n solving the problems.

M a n y times the expert m a y not be expressing explicitly (or

may not be even aware o f) m a n y intermediate level concepts during

a p r o b l e m solving activity. I t i s n e c e s s a r y that these concepts

be identified. T h i s helps organizing the KB in m o r e efficient

m a n n e r both conceptually and computationally.

Knowledpe
. . 5.2.8 G e n e r a l YS, Domain Specific

I t is n e c e s s a ry to separate general knowledge f r o m domain

specific knowledge. T h i s supports transparency and the

incremental development of the system.

N o n e of the existing KBSs are intended for non-professionals

of the d o m a i n the s y s t e m w a s developed f o r . I t is u n l i k e l y in

the n e a r future that systems will be developed that could be used

by non-professionals and still have h i g h performance. Therefore

i t is n e c e s s a ry for the user of the KBS to be proficient in the

field, understand the underlying theory, be able to converse with

the expert in the jargon of the field, and confront significant

problems within the domain in his daily activities.

240

As was mentioned few t i m e s in this report, the power of a

KBS derives from its ability to reason plausibly under uncertain

conditions (incomplete or inexact data) and there is no guarantee

that the system will always produce a "correct" solution under

those conditions. I t could produce only a reasonable or

plausible result. For a KBS to be successful, i t is necessary

that the intended users could accept such reasonable or plausible

results along with their explanations.

SuDDort
. . 5 . 2 . 1 0 U a n t i c i ~ a t ed

I s the domain dynamic? By this, i t is meant whether the

problems that users try to solve, though within the domain, are

constantly shifting in unpredictable ways. Any KBS should be

built with the provision for expanding its K B , but to accomnodate

drastic shifts may be quite difficult.

5 . 2 . 1 1 Cost versus Benefits

Building a KBS is expensive and time consuming. The

problems that are solved by KBSs must be useful, and solutions

should be reliable to the users. The time spent by the user

(professional in the domain) to solve a problem using a KBS must

be worth the effort.

Another aspect o f usefulness of a KBS is related to data

gathering and recomnended actions. A KBS that can help reduce

241

the cost o f the information gathering process and that can

provide solutions with less (o r low quality) input will be very

useful to the users.

This section discusses some of the issues that relate to the

design and implementation f r o m a technological view point.

5.3.1 Build ingthe-Svstsm

Development of a prototype system is a very important step

in construction of a KBS. The main intent of this exercise is to

test whether the proposed method will work. If not, it mag

indicate a re-exminiation of the design o r the basic underlying

ideas. The prototype KB can be implemented by using whatever

knowledge engineering aids are available for the chosen

representation (intelligent editors, etc).

Even if the prototype systemworks from the beginning to the

end, i t does not guarantee that the final KBS will do as well

across the spectrum of problems i t was designed for, but i t will

indicate that the approach is reasonable.

5.3.2 -Size

The design of the data structures and procedures should

reflect as accurately as possible the expert’s conceptualization

o f the problem domain. This not only minimizes the effort needed

242

for the translation, but also helps in removing errors and

improving the system. This is not to suggest that the KBS should

mimick (or simulate) the expert’s problem solving approach:

however, that the expert should be a part of the process and the
- . _

system should benefit from expert’s heuristic knowledge and the

informal style of reasoning the expert uses.

5.3.3 w e s e n t a t ion nf Knowledee

The method for representing knowledge should be chosen

carefully. Many of the successful KBSs use simple production

rule representation. Inventing new representational techniques.

for a new application area may increase the risk o f failure,

unless, of course, the technique is an clear extension of a well

known one. This is not to suggest that new representational

techniques should not be explored, but to warn that such

techniques should be rigorously tested first before they can be

considered to build a large scale KBSs.

5 . 3 . 4 Inference Engine

In the beginning, at least, a simple inference engine should

be built. This not only permits experimentation with the

knowledge representation methods sooner, but also makes knowledge

much more accessible. Some of the better known problem solving

methods include heuristic search, deductive inference from rules,

pattern matching.

For a very complex system with multiple levels of

243

abstractions and multiple representations of knowledge (like

speech understanding systems, e.g., HEARSAY-111, different

methods may be required to solve the problem at different levels.

5 . 3 . 5 bkm Knowled-

If the domain is very large and complex, i t i s increasingly

difficult for anyone to stay "on top" of everything. Therefore,

if the reasoning process and control can be incorporated in the

inference engine, then the systemwill be relatively simple and

easy to implement.

5.3.6 Procedural Knowledge

I t is important to ensure that knowledge i s not embedded in

code (procedures) in the inference engine. All the knowledge

should be incorporated in the system's knowledge base. This type

of error in the design will reduce the flexibility of the system

or force major modifications as the system grows.

QLKnowledPe-aUsers . .
5 . 3 . 7 Addition

If the users of a KBS add knowledge, in contrast to data (as

may be necessary for solving certain problems), to knowledge

base, the KBS will be difficult to design and implement -

particularly the knowledge acquisition interface and associated

facilities for validating the consistency o f the added knowledge

as well as the control mechanism in the inference engine.

244

. . . 5 . 3 . 8 m i b i -

A KBS should be designed to grow in various ways from its

initial conception and implementation. The areas for improvement - . -

include:

(1) Increasing knowledge base.

(2) Increasing inferential capabilities.

(3) Improving the flexibility of user interface.

(4) Increasing the overall reliability and performance o f

the system by refining the inferential capability and

learning from errors of the past.

5 . 3 . 9 W w l e d s Benresentat ion Tools

A tool for building a KBS should be as specialized as

possible. This is because the more general the representation

and control, the more difficult and inefficient is the

representation of any particular chunk of knowledge.

(b) Apnropriateness nfLiuzTool

The appropriateness of a tool can be tested by building a

s m a l l prototype system. Even though the actual development of

the KBS may take many months of effort, i t may be possible to

test the effectiveness of a particular tool through the intensive

efforts of the expert and knowledge engineer in a much shorter

245

period of time.

. . .
(c Ac c e s s i b 1 1 i ty

A tool that is still maintaned by the developer and is

proven to be robust should be selected. The selection of an old

tool that is not currently mainatined by the developer may prove

to be difficult to get running initially.

. . . (d) ~ l a n a t i P n / I n t e r a c t i o n P a c i l i t i e s

If the tool selected has very good explanation and

interaction facilities, i t not only improves the speed of the KBS.

development, but also results in a more intelligible system.

(e) Problem mars cterist ics YSL Tool Featu r e s

The selection of a tool is directly influenced by the

problem characteristics, which include size of search space, the

form of data (continuous, time-varying, uncertain, inconsistent,

etc.), and the structure of the problem (incomplete knowledge,

interacting subproblems, etc.).

The tool selection also depends on the solution

characteristics, which include the type of search (exhaustive,

heuristic search, etc.), the representation of knowledge

(production rules, frames, etc.), and the form of control

(parallel processing of subproblems, top down refinement, etc.).

246

5.3.10 D e s i = pf T o o l s fpr B u i ldinPKBSs

If the existing tools or aids are inadequate to build KBSs,

the knowledge engineer must develop n e w ones. T h e design of such

a tool involves m a n y considerations including generality,

completeness, language features, data base structure, and control

methods.

- .

(a) G e n e r a l i t v

G e n e r a l i t y depends on the range of application areas for

w h i c h the tool i s appropriate. The designers w o u l d like to

d e v e l o p a general purpose tool that could b e used for a w i d e

range of problems, but the tradeoff here i s efficiency of d e s i g n

and development versus power of the tool for each application.

(b) m l e t e n e s z

The completeness of the tool depends o n the number and

usefulness of the features included in the tool. For example,

systems like EMYCIN, EXPERT, and KAS provide the largest number

o f special support features. These features contribute to the

power and efficiency of the system w i t h i n the restricted

a p p l i c a t i o n domain.

P r o v i d i n g high-level language facilities f o r the tool speeds

up the development process and contributes to extensibility of

247

the system. T h e language should be both readable to the experts

(i.e., the experts should be able to read and understand without

any previous training) and manageable by the knowledge engineers

(i.e., the knowledge engineer should be able to m o d i f y or augment

the rules with only modest training).

.,.

O t h e r useful features to incorporate into tools are

facilities for explanation and user interaction facilities.

T h e s e facilities speed u p the prototype s y s t e m development.

(e) D a t a u e s e n t a t i o n

A n o t h e r important feature of the tool i s the control

structure o f the data base. The tool should have basic data

representation schemes that i s a s general as possible keeping the

representation task reasonably easy (constrained). I f i t is too

r e s t rictive, e v e n simple problems will be unsolvable. On the

other hand, if i t provides too m u c h f r e e d o m and very l i t t l e

g u i d a n c e , complex problems will see m overly complex.

T h e power, generality, and accessibility o f the control

m e c h a n i s m are important aspects of a n y KBS building tool. The

representation of the procedural knowledge i s d i r e c t l y affected

by t h e control structure. F o r example, the use o f iteration,

recursion, backward chaining, etc. affects decisions regarding

248

representation of procedural knowledge. A rigid and constrained

control strycture simplifies and speeds up the development of

interaction and explanation facilities in the KBS. I t also

contributes to incremental development of the system, providing a

h i g h e r degree of m o d u l a r i t y than could be achieved f r o m a m o r e

general control mechanism.

- .

5.4 Enyi r w n t a 1 Cons i de ra t i ons

In the last two sections, initial considerations and

technology considerations w e r e discussed. In this section, the

operational and developmental environments for KBSs are

discussed.

5.4.1 Interactive I(Bs

To b e m o s t useful to its users, a KBS i s n e c e s s a r y that i t

i s interactive. E v e n though i t is possible to build a KBS that

runs in a batch processing environment, i t i s u nlikely that i t

will b e successful; "a batch system just cannot provide helpful,

r a p i d feedback and imnediate error recovery, for example, f r o m a

simple typing error" [Buchanan, 7 5 1 . So, the basic design

philosophy for a KBS should b e that of a user oriented,

interactive system.

5.4.2 Interact ive Develooment-ent

An interactive development environment will speed up the

249

implementation process - particularly when acquiring knowledge

f r o m the expert and transferring i t into knowledge base, and

validating the n e w knowledge. T h u s , i t i s necessary that the

development environment for the KBS be a n interactive one.

5.4.3 L o c a l -Environment

A KBS should be able to access the local operating system

a n d various builtin explanation and interaction facilities of the

external computer environment. T h i s fact w a s particularly

illustrated during the development of RITA and ROSIE. S u c h a n

interaction w i t h the external environment extends the power and.

g e n e r a l i t y of a KBS, since i t enables the s y s t e m to control other

jobs in parallel, and accessing t h e m like subroutines. F o r

instance, this KBS c a n perform complex mathematical calculation

in FORTRAN or access external data bases via computer networks

[Hayes-Roth, et al, 831.

Chapter 6

CONCLUSIONS

The technology of KBSs has emerged from AI research. Many

KBSs have been built in the past decade in a wide spectrum of

application areas, from medicine and chemistry to geology and

business to computer configuration and project risk assessment.

The DENDRAL system has been in regular use by university and

industrial chemists throughout this country. The PROSPE-R

system has been applied to many practical problems of the US

Geological Survey and US Department of Energy. Digital Equipment

Corporation is using the R1 system to configure their computers.

Still, KBSs have not achieved the status of being comnonly

known o r comnonly understood like many other computer-based

sy s t ems.

There appears to be, as noted by Buchanan and Duda, at least

three main motivations for building KBSs, apart from research

purposes [Buchanan & Duda, 8 3 1 :

(a) Replication and Distribution o f Expertise

An expert becomes one only after years o f education,

training, and experience. By building KBSs, one can provide

many (electronic) copies of an expert’s knowledge (or expertise),

s o i t can be consulted even if the expert is not personally

available because of geographical location, because of

retirement, o r for whatever reason.

250 R

C k) U n i o n of Experkise

i n some d o m a i n s) t h e r e may b e n o s i n g l e s p e c t i , i s t w h o s e

e x p e r t i s e s p a n s t h e e n t i r e prcjlcn domain. KESs c a ? ? - ' : v i d e l i n

i jne p l a c ~ ~ t h e u n i o n o f th.1 e x p e r t i s e t ~ + ssvsral 5 3 5 c i a i i s t s .

For i n S t a n c J 1 PRAS (F r o j e c t R i s K A s s e s ~ m e n ~ S q s t s r n) , b e i n g

d e v e l o p e d b y H i t a c h i , is ar! r x p e r t 5 ; ~ s k e m t h a t c a n b e used f o r

p 1. ar;n i n 9, c r j n s tr u c t i on, a n d m a i n t e n a n c e oi? la : -ge s c a l e

c o n s t r u c t i o n p r o j e c t s . 11; usss e x p e r t i s e f r o m e n g i n e e r i n g ,

design, a n d c o n s t r u c t i o n s p e c i a l i s t s C F e i 3 e n b a u n 3 r !+lcCorduck,

83 2 .

i c) G o c v m e n t a t i o n

KI3Ss c a n be u s e d t o p rov i l i e a c l e a r r e c o r d o f t h e bes t

k n c w l e d g e a v a i l a b l e f o r handling a s p e c i i ? i c p r o b l 3 m a n d t h i s

r e c o r d c a n b e u s e d f a r t r a i n i n g .

3 l J i l d i n g K B S s i s very e x p e n s i v e a n d t i m o c s n s u m i n g .

C o n s t r u c t i o n s o m e t i m e s t a k e s a s much as 10 t o 2 5 p e r s o n - y e a r s a n d

c o s t s as m u c h as 8 1 t o %2 millicn. B u t t h e general level O S

a c c o n p i i s h m e n t i s h i g h encugh t o mak.e i t w o r t h w h - l e . For

i n s t a n c p , 9 3 1 I n t e r n a t i o n a l (w i t h the US G e o l o g i c a l S u r - ~ e y i b u i l t

an expe r ' ; s q s t e m , PROSPECTOR, f o r a d v i s i n g d u r i n g the g ~ o ~ z e s s o f

fizld e x p i o r a t i o n f o r m i n e r a l s . I n 1982, t h e expe ' r t i y s t g m was

1 ~ 5 e d b q zi company e x p l o r i n g f o r m i n i n g m o l q b d e n u m i n t h e

! & t ~ h i n g t o n S t a t e C a s c a d e M o u n t a i n s l a n d a f i n d waz made. T h e

v a l u e o f i t has b e e n variously e s t i m a t e d at s e v e r a l m i l l i o n t a

- C h a p t e r i

P 0 TE IJT I A L FU T UF E R E SEAR C i-i +F; 2 ,A3

K n o w l e d g e a c q t ~ i s i t i o n <:.A) 1.3 i;ne 0-i' t; i?e t3f2st ~1 - 1 Z i : ~ i t and

time c a n s u r i i n g p r o c e s s i n b u i l d i n g PJ3S.z. T h e knowLeCg..- 5 a s e i n

DENCIRAL, f o r i n s t a n c e) was o r i s i n a i l y "custom c r a f t e d ' a?;c i s r g ~

p a r t s o f t h e s y s t e m w e r e r e w r i t t e n a + 9 w t i m e s 3 s Z n s w l e d g e b a s e

c h a n g e d . L a t s r on, h i g h l y s t y l i z e d ~ T Q C ~ ~ : J I - F I . S +fist were

c i s p e n d e n t onLq o n g l o b a l p a r s m e t e r s were a t t e n i p t - e d . . z t i ? l t h e

v - -. programmers u e ~ e r e q v i r e d t o W r i t s new p r o c e d u r e s . , e , - f 5 l a t e r !

+ i n a l l y , t h e k n o w l e d g e 0 9 mas5 spectrometrq wss c r l i . F i e c i n

production r u l e s .

In l a t e r sys t ems , a f r a m e w o r k i n w h i c h t h e voc3bulary and

s y n t a x f o r t h e k n o w l e d g e b a s e a r e f i x e d i s I n i t i a l l y zevalsped.

N e w k n c w l e d g e i s f i l l e d (scmetimes f a r c e d ! i n t o t h i s ? ranrework

t h u s s p e e d i n g 'JP t h e HA p r o c e s s c o n s i d e ~ a b l y . T h e f t ~ ~ w i ~ ? c i g e

e n g i n e e r i s s t i l l required t o i n t e r a c t and e x p l a i n t h s p r r f g ~ m ' s

f r a n e w o r k t c t h e e x p e r t . He i s s t i l l r e s p o n s i b l e for translating

* h e e x p e r t ' s problem s o l v i n g k n c w l e d g e i n t o t h e C ? a m e w c i r k . T h u s ,

d e s p i t e s e v e r a l c o n c e n t r a t e d e f f o r t s , t ~ e K A procss; . : . ; t i l l

r e n l a i n s a b o t t l a n e c k .

An e x p e r t builds the Gncwleitrje base p a r t l : ~ f r o m past

an induction program could build a knovleujge base ir;r =P expert

. . -,ystem in a similar way. A n induction p r s g r a m : ~ * > i c h c ~ n d s

considerable basic knowledge o f the domain. In ; a c t r 'some

prctotype machine learning programs airesdy exist b u t n o n e of

t h e m can be used .For automatic knowledge acquisition in building

KBSs. However, m a n q prototype s y 5 t e m s point t a f u t u r s research

in this direction.

Ultimately, it would be desirable to h a v e a p r o : j r a n which

c a n acquire knowledge directlq f r o m t e x t b o o k s , J O U ~ T ! ~ ~ S , etc.

CRadre, 731. This process requires much ~ O T S s,apnisti,:stion than

language understanding progrsms posses I ;odaql incl:Jding t h e

ability to view and understand diagrams.

i b) HDS Suildincl Tools

Though it is reasonablq clear w h e r s K E S kzchno!~:,~:.; can be

and cannot be sed^ thert. is n o general t h e c r , 4 o r ?- r l .mework to

guarantee t h a t a selected application will b e j u c z e s s + ~ - ! l . Hcw t o

ORIGIrMiL PAGE IS
OF POOR QUALITY

(c) E x p l a n a t i o n

T h e 5 u c t e s s ot? 3 K B S d e p e n d s , p a r t ia 1 l y , an t h e i r

a c c e p t a b i l i t y b y t h e v5ersj w h i c h i n t u r r ; s i l l b e ~ z \ l u e r ; ~ d d b y

t h e K B S ' s e x p l a n a t i o n f a c i l i t i e s . T h e US ST^ ? r e (t ! ~ p i c 3 l i y ! n o t

c o m p u t e r p r o f e s s i o n a l s a n d h e n c s c a n n o t b e z x p e c t t d T O know t h e

e n t i r e s y s t e m . The U S ~ T S use a KES a + an intelligent a s s i s t a n t

and t a k e a d v i s e f o r t h e i r p r o b l e m s . They w i l l .xsKe s o m e

d e c i s i o n s based o n t h a t a d v i s e . I n many c a s e s , t h e y w ; . I l b e h e l d

r e s p o n s i b l e f o r t h e i r actions. Natzrall::, t h e y u a n t t: kncu a n d

u n d e r s t a n d the r a t i o n a l basis f G T t h e sqsten'; i e c : : ~ . o n s

CBilchanan, 82-1.

. .

One k i n d ol' i n t e r a c t i v e e x p l a n a t i o n i.: s i m p 1 . r q u e s t i o n

a n s : d e r j , n g as d e s c r i b e d i n C S c s t t , e t a i , 773. Bc;? J L ; . ~ ' : 3 n c ; i i e r i n g

questions a b o u t a k n o w i e d g e base (kno2:rn as 5'2 s t a t i c ~ ~ - u a r i ~) i s

n c t e n o u g h i n g i v i n g t h e users t h e i n f o r m a t i o r t h e y ; : sed . I n

I n t h e p a s t d e c a d e , manq &BSs h a v e b e e n b u i i t and 5ome o f

t h e m a r e mov ing f r o m a c o m f o r t a b l e r e s e a r c p . a n d . d e v e l o p m e n t

e n v i r o n m e n t i n t : , t h e n a r k e t ? l a c e . CENERAL; t1.4CSYMkj .5vd VCLGEN

a l l are r o u t i n e l y u s e d b y l i s e r l i who S r e n o t c o n n ~ r t z i t o t h e

d e s i g n e r s o f t h e s y s t e m . There:'orsl t h e d e - e l o p e r s Z T S i x p e c t e d

t a p r o v i d e some o b j e c t i v e d e m a n s t r a t i o n t h a t ? h e s y ~ % - . n per .Forms

3s w e l l as t h e y c l a i n .

E x i s t i n g t e c h n i q u e s for e v a l u a t i n g t h e KESs 3 7 . 2 f e w a n d

p r i m i t i v e . Much m o r s e f f o r t has b e e n d e v o t e d t o d s s i g n i n g a n d

c o n s t r u c t i n g KBSs t h a n t o m e a s u , r i n l ; t h e i r r e s u ? % i r r g p s : - fg r (i l ance .

T h e r e is n o t o n ~ e n s u s a b o u t t row tr, e v a ! u a t e K3S+ <:2r w h a n o r

w n y) .

The c r i t e r i a l i k e c u r r e C t n e s s I e i f i c i e n c q , C T f - i s n d l i n e s s

t h a t ; are u s e d t o e v a l u a t e a t h z r c o m p u t e r - b a s e d sysr; .rns c a n b e

I t i s hoped that, i n t h e f u t u r - e ~ rn3re s t x ~ n t i o n wiil Si?

d i r e c t e d towards t h e issue.: O F e v a l u a t i o n .

l e i Parallel Proczssina

A s K B S s become m o r e complex a n d t h e i r k n o w l e d g e b a s e + grow

i n s i z e , or,e n e e d s t o f i n d m e t h o d s f n r i n c r e s s i n g ~ " i i c i e n c y .

One way t o i m p r o v e efficiency :s t o s a i . ; e c u b p - c b l s m c in

parallel. Some problem5 r e q u i r e d i s t r i b u t e d c o n t r o l to i m p r o v e

t h e r e l i a b i l i t y o + t h e o v e r a i l system. Verq 1 : t t l e e x p e r i e n c s

e x i s t s i n t k i - s d i r e c t i o n .

O n e w a y t a i m p r o v e t h e p ? r F q r n a n c e o f d Ki3S is il;r i t t o

l e a r n from i t s p a s t experience^ t h e way human oxpert: d o . A n y

258

k i n d o f learning still requires special systems. I t is desirable

f o r every KBS to benefit f r o m its past experience.

M a i n t a i n i n g a large knowledge base is a s difficult a s

building one. In some domains w h e r e n o closed f o r m solution

e x i s t s , the knowledge o f a n expert (along w i t h techniques) may

change. In m e d i c i n e , for instance, n e w microbiological agents

a r e discovered continually as w e l l a s n e w drugs to treat them.

N e w techniques need to be developed to ease the maintenance of

k n o w l e d g e bases. 3
(h) B b s t r a c t i o u d Hierarchies

M a n y KBSs represent and use abstractions and hierarchies.

But there is no m e c h a n i s m to compare the various techniques to

understand their strengths and weaknesses.

With the constant innovations and improvements in computer

h a r d w a r e that have been taking place in the past two decades, one

c a n expect to see "portable" expert systems, PC-based expert

systems, etc. in not too distant future.

PRECEDING PAGE BLANK NOT FILMED

APPEND1 C I ES

Appendix A

A CASE STUDY- MYCIN

MYCIN is medical consulting system that was developed at

Stanford in 1 9 7 6 . A brief overview of MYCIN is presented in this

appendix. The material covered here is a condensation of

[Shortliffe, 7 6 1 and [Buchanan & Shortliffe, 8 4 1 .

MYCIN is a knowledge based interactive computer system to

assist physicians who are not experts in prescribing

antimicrobial infections o f the blood (bacteremia).

-f

An antimicrobial agent is any drug designed to kill bacteria

o r to arrest their growth. Thus, MYCIN assists in the selection

o f an agent (or combination o f agents) for use in treating a

patient with a bacterial infection.

The name MYCIN is taken from the comnon suffix shared by

several of the antimicrobial agents like clindamycin,

erythromycin, gentamycin, kanamycin, and vancomycin. I t reflects

the central concern of the program, namely the selection of an

appropriate therapeutic regimen for a patient with a bacterial

infection.

2 6 0

261

The p r o b l e m o f therapy selection a n d recomnendation for a n

infectious -disease i s difficult and complex. First, the

physician m u s t decide w h e t h e r the patient has a significant

bacterial infection requiring treatment. I f there is significant

disease, the o r g a n i s m m u s t be identified. T o do this, one must

obtain a specimen o f the infection for culturing, analysis, and

identification by a laboratory. This i s a time consumitlg

process. A n d , in m a n y cases, the infection is serious enough

that treatment m u s t be begun before all o f the analyses can be

completed. T h e r e f o r e , any recomnended therapy must be based on

incomplete information. T o further complicate m a t t e r s , the most?

effective drug (or a s e t of dr-ugs) against the suspected or-

identified o r g a n i s m m a y be totally inapporpriate for the specific

patient because o f age or medical conditions and problems. Thus,

any s y s t e m o r consulting physician must be aware of all of these

complexities if proper advice i s to be rendered in each specific

case. MYCIN has been designed to cope w i t h just such

complexities and interrelationships among the m a n y variables and

to provide a physician with advise that is proper f o r each

individual patient.

T h o u g h the p r o b l e m i s q u i t e complex, the d o m a i n is well

bounded. MYCIN requires knowledge related only to infectious

diseases, and knowledge related to experience with various

infectious organisms in terms of resistance to specific drugs,

and knowledge of symptoms related to specific infections.

MYCIN i s intended to be used by physicians. T h e dialog that

262

i t c a r r i e s on with the user is in the jargon of medicine and

specifically that of infectious diseases, laboratory procedures,

infectious organisms, drugs, etc. T h u s , a user of MYCIN is

expected to be a competent medical practitioner.

MYCIN’s knowledge base contains several knowledge sources -

production rules, clinical parameters, special functions,

procedures for therapy selection and patient data base.

”t A . 2 . 1 Bearesentat i o n ef Rules

T h e 200 (production) rules currently in the MYCIN system

consist of a PREMISE, ACTION, and sometimes a n ELSE clause.

E v e r y rule has a name of the f o r m ”RULE ###” , w h e r e ”###” is a

three digit number. The rules are stored as LISP data structures

in accordance with the following Backus-Naur F o r m (BNF)

d e s c r i p t i o n (only a partial description i s g i v e n here: a complete

d e s c r i p t i o n c a n be found in [Shortliffe, 7 6 1) :

< rule > : := < p r e m i s e ’ < a c t i o n ’ I < p r e m i s e ’ c a c t i o n ’ < e l s e)

< p r e m i s e) : : = (SANDccondition’ . . .< condition))
< c o n d i t i o n ’ : := (c f u n c l > < c o n t e x t ’ < p a r a m e t e r ’) I

(c f u n c 2 > < c o n t e x t ’ < p a r a m e t e r ’ c v a l u e ’) I

(e special-func’<arguments’) I

(S O R < c o n d i t i o n > . . .< condition’)

263

T h e PRHMISE of a rule consists of a conjunction of

conditions,- each of w h i c h must hold for the indicated ACTION to

be taken. Negations of conditions are handled by the individual

predicates (< f u n c l > and Cfunc2,) and therefore d o not require a

SNOT function to complement the Boolean function SAND and $OR.

If the PREMISE of a rule is k n o w n to be false, the conclusion or

action indicated by the ELSE clause i s taken. If the truth of

the PREMISE cannot be ascertained, o r the PREMISE is false but no

ELSE co n d i t i o n exists, the rule is simply ignored. In addition,

the s t r e n g t h of e a c h rule's inference is specified by certainty

factor (CF) in the range -1 to +l. CF's are discussed in t h q

next section.

~ , _

A . 2 . 2 G n t ext Tree

A l t h o u g h i t is c o m n o n to describe a d i a g n o s i s as a n

inference based on attributes of the patient, MYCIN's decisions

m u s t n e c e s s a r i l y involve not only the patient but also the

cultures that have b e e n grown, organisms isolated, and d r u g s that

have b e e n administered. E a c h o f these i s termed a "context" o f

the program's reasoning.

MYCIN currently k n o w s about 10 different context types:

CURCULS - a current culture f r o m w h i c h organisms w e r e
isolated

CURDRUGS - a n antimicrobial agent currently being
administered to a patient

CURORGS - a n o r g a n i s m isolated f r o m a current culture

264

OPDRGS - an antimicrobial agent administered to the
patient during a recent operative procedure

OPERS - an operative procedure which the patient
has undergone

PERSON - the patient himself

POSSTHER - a therapy being considered for
reconmendation

PRIORCULS - a culture obtained in the past

PRIORDRGS - an antimicrobial agent administered to
the patient previously

PRIORORGS - an organism isolated from a prior culture

These context types (except for PERSON) may be instantiateq

more than once during any given run o f the consultation program.-

Some may not be created at all i f they do not apply to the given

patient. However, each time a context t r e e is instantiated, i t

is given a unique name. For example, CULTURE-1 is the first

CURCUL and ORGANISM-1 is the first CURORG. Subsequent CURCLS or

PRIORCULS are called CULTURE-2, CULTURE-3, etc.

The context types instantiated during a run of the

consultation program are arranged hierarchically in a data

structure termed the "context tree". One such tree i s shown in

Figure A-1. The context types o f each instantiated context is

shown in parentheses besides its names. Each node in the context

tree is called context and i s created as an instantiation of a

context type.

2 6 5

PATI ENT-1 (PERSON)

ORGAN I SM-1 ORGAN I SM-2
(CURORG) (CURORG)

I

FIGURE A-1, SAMPLE CONTFXT TREE
BASED ON [BUCHANAN 8 SHORTLIFFE, %+I

266

This sample context tree corresponds to a patient f r o m w h o m

two c u r r e n t - c u l t u r e s and one prior culture w e r e obtained. One

o r g a n i s m w a s isolated f r o m each of the current cultures, but the

patient i s being treated (with two drugs) for only one of the

current organisms. Furthermore, two organisms w e r e grown from

the prior culture but therapy has included a recent operative

procedure during w h i c h the patient w a s treated with a n

antimicrobial agent.

- .

A . 2 . 3 C a t e ~ o r i z a t i u & U

7 T h e 200 rules currently used by MYCIN are not explicitly

linked in a decision tree or reasoning network. T h i s feature

adheres to the designer’s decision to keep t h e s y s t e m knowledge I

m o d u l a r and manipulable. However, rules are subject to

I c a t e g o r i z a t i o n in accordance w i t h the context - types for w h i c h

they are appropriately invoked. For example, some rules deal

w i t h organisms, some with cultures, and s t i l l others deal solely ~

with the patient himself. MYCIN’s current rule categories are as

follows:

(1) CULRULES - Rules that m a y be applied to any culture.

(2) ClTRCULRULES - Rules that m a y only be applied to current
I
I

cultures. I

(3) CURORGRULES - Rules that m a y b e applied only to current
organisms . I I

(4) DRGRULES - Rules that may be applied to any
antimicrobial agent that has been
administered to combat a specific
organism.

267

(5) OPRULES - Rules that may be applied to operative
procedures.

- . (6) ORDERRULES - Rules that are used to order the list of
possible therapeutic reconmendations.

(7) ORGRULES - Rules that m a y be applied to any organism.

(8) PATRULES - Rules that m a y be applied to the patient.

(9) PDRGRULES - Rules that m a y be applied to drugs g i v e n
to combat prior organisms.

(1 0) PRCULRUES - Rules that may be applied only to prior
cultures.

(11) PRORGRUES - Rules that may be applied only to
isolated organisms f r o m prior cultures.

(12) THERULES - Rules that store information regarding 7
drugs of choice.

E v e r y rule in the MYCIN system belongs to o n e , and only one,

of these categories.

Parameters A.2.4 Clinical . .

T h e s y s t e m also contains a c o l l e c t i on of clinical

p a r a m e t ers, represented as cattribute, o b j e c t , value, triples. A

clinical parameter i s a characteristic of one of the contexts in

the context tree, i.e., the name of the patient, the site of a

culture, the m o r p h o l o g y o f a n o r g a n ism, the dose of the drug,

etc. All su c h attributes are termed as "clinical parameters".

T h e clinical parameters known to MYCIN are categorized in

accordance with the context to which they apply. T h e s e

categories include:

268

(1) PROP-CUL - T h o s e clinical parameters that are
attributes (e.g., s i t e of the
culture, m e t h o d of collection).

(2) PROP-DRG - Those clinical parameters that are
attributes of administered drugs
(e.g., n a m e of the d r u g , duration
o f administration)

(3) PROP-OP - T h o s e clinical parameters that are
attributes of operative procedures
(e.g., the cavity, if any, opened
during the procedure)

(4) PROP-ORG - T h o s e clinical parameters that are
attributes of organisms (e.g.,
identity, g r a m stain, morphology)

(5) PROP-PT - T h o s e clinical parameters that are
attributes of the patient (e.g.,
name, sex, age, allergies,
diagnoses)

(6) PROP-THER- T h o s e clinical parameters that are
attributes of therapies being
considered f o r reconmendation
(e.g., recomnended dosage, pre-
scribing name)

C u r r e n t l y there are 65 clinical parameters k n o w n to MYCIN.

Ea c h of the parameters has a certainty factor reflecting the

system's "belief" that the value is correct (a n associated set of

properties that i s used during consideration of the parameter f o r

a given context). This f o r m a l i s m is necessary because, unlike

domains in w h i c h objects either have or d o not have some

attribute, in m e d i c a l diagnosis and treatment there is often

uncertainty regarding attributes such as the significance of the

disease, the efficacy o f a treatment o r the diagnosis itself.

269

In addition to certainty factor, each parameter i s

a s s o c i a t e d with a set of properties that is used during

consideration of that parameter f o r a g i v e n context. These

properties specify such things as the:

- Range of expected values a property may have.

- T h e sentence to transmit to the user w h e n requesting

data f r o m him.

- T h e l i s t of rules w h o s e PREMISES reference the

par ame t e r .
- T h e list o f rules w h o s e ACTION or ELSE clauses permit

a conclusion to be m a d e regarding the parameter, etc. ?

O n l y those properties that are relevant to each parameter

are associated with i t . H o w e v e r , properly specifying h o w the

parameter is to be represented in E n g l i s h i s m a n d a t o r y for all.

A.2.5

Additional information i s contained in s i m p l e l i s t s that

simplify references to variables and optimize knowledge storage

by avoiding unnecessary duplication. T h e s e lists contain such

t h i n g s as the names of organisms k n o w n to the s y s t e m and the

n a m e s o f n o r m a l l y sterile and non-sterile sites (called

STERILESITES and NONSTERILESITES, respectively) f r o m w h i c h

organisms are isolated.

270

In conjunction w i t h a set of four special functions, MYCIN

uses knowledge tables to permit a single rule to accomplish a

task that w o u l d otherwise require several rules. A knowledge

table contains a comprehensive record of certain clinical

parameters plus the values they take on under various

circumstances. For example, one of M Y C I N ’ s knowledge tables

itemizes the gramstain, m o r p h o l o g y , and aerobicity f o r every

bacterial g e n u s known to the system.

- .

A. 2 . 7 SFec ial ized T u n c t i o n s

T h e efficient use of knowledge tables requires the existence

of four specialized functions. These functions help to recomnend

the apparent first choice drug for the therapy.

This constitutes the m a j o r i t y o f MYCIN’s knowledge base,

w h i c h permits the s y s t e m to comprehend the nature of a n infection

w i t h o u t complete information about the o r g a n i s m involved, and

provide the physician w i t h proper advise regarding treatment

under the circumstances. This organization and structure, along

with the w a y the knowledge i s used, facilitates the system’s

a b i l i t y to e x p l a i n its actions and advice.

A . 3 MyCIN ’ s InferenceEngine

MYCIN’s inference engine i s domain independent in the sense

that none of the knowledge required to provide advice about

271

bacteremia is embedded in it. T h u s , additional rules concerning

infectious disease may readily be added, or a n e w knowledge base

could be substituted to provide therapeutic advice about a - .

different d o m a i n o f infections. As discssed in Section A . l ,

MYCIN’s ta s k involves a four stage decision problem:

(1) Decide w h i c h organisms, i f a n y , are causing

significant disease.

(2) Determine the likely identity of the significant

organism.

(3) D e c i d e w h i c h drugs are potentially useful.

(4) Select the best drug o r drugs.

S t e p 1 and step 2 are closely interrelated, since I
d e t e r m i n a t i o n o f a n organism’s significance m a y w e l l depend upon

i t s p r e s u m e d identity. Furthermore, MYCIN m u s t consider the

possibility that the patient has a n infection w i t h a n organism

not specifically mentioned by the user (for example, a n occult

abscess s u g g e s t e d by historical information or s u b t l e physical

I

~

,

I
findings). Finally, if MYCIN decides that there is n o I

significant infection requiring antimicrobial therapy, i t should

skip steps 3 and 4, advising the user that n o treatment is

thought to be necessary.

,

A consultation session with MYCIN results f r o m a simple two

step procedure:

2 7 2

(1) C r e a t e the patient context as the top node in the

c-ontext tree.

(2) Attempt to apply the goal rule to the newly created - .

patient context.

W h e n MYCIN first tries to evaluate the PREMISE of the goal

rules, the first condition requires that i t k n o w w h e t h e r there is

a n o r g a n i s m that requires therapy, MYCIN then reasons b a c h a r d s

in a m a n n e r that m a y be informally paraphrased as follows:

How d o I decide w h e t h e r there i s a n o r g a n i s m requiring
therapy? W e l l , RULE090 tells m e that organisms associated
with significant disease require therapy. But I don’t e v en
h a v e any organisms in the context tree yet, so I’d b e t t e r f
a s k first if there are any organisms and if there are I ’ l l
t r y to a p p l y RULE090 to each of them. However, the PREMISE-
o f RULE090 requires that I k n o w w h e t h e r the organism is
significant. I have a bunch of rules f o r m a k i n g this
d e c i s i o n (RULE038 RULE042 RULE044 RULE108 RULE122). For
example, RULE038 tells m e that if the o r g a n i s m came f r o m a
sterile site i t i s probably significant. Unfortunately I
don’t h a v e a n y rules for inferring the site o f a culture,
however, so I guess I ’ l l have to a s k the user for this
information w h e n I need i t . . .

T h i s goal oriented approach to rule invocation and question

selection is automated via two interrelated procedures, a MINITOR

that analyzes rules, and a FINDOUT m e c h a n i s m that searches for

data needed by the MINITOR. Th e s e two procedures or components

constitute M Y c I N ’ s inference engine or control structure.

MlNITOR’s function (Figure A-2) is to determine whether the

conditions stated in the PREMISE of a rule are true. To do so,

it c o n s i d e r s e a c h condition o f the PREMISE at hand, first

determining w h e t h e r i t has all of the n e cessary information to

273

make the determination. If it requires information, it calls

FINIXlUT to obtain what is needed. FI"T (Figure A - 3) first

determines whether the needed information is laboratory data. I f

i t is, i t asks the physician for i t . I f the physician cannot

provide i t , FINDOUT retrieves the l i s t of rules that may aid in

deducing the information and calls mNITOR to evaluate the rules.

When the process completes, control i s returned to MINITOR. If

the information needed is not laboratory data, FINDOUT retrieves

the list of rules that may aid in deducing the needed information

and calls hXlNITOR to evaluate the rules. If the deductive

process of applying the rules (backward from a goal to the d a t v

o r information needed) cannot provide the needed information, the-

physician is asked to provide i t . In either case, control is

returned to rvONITOR. Given the information that is provided by

FINDOUT or that was already available, MINITOR determines whether

the entire PREMISE is true. I f i t i s not, and there i s no ELSE

clause, the rule i s rejected. I f the PREMISE i s true or the ELSE

clause is invoked, the conclusion stated in the ACXION of the

rule or in the ELSE clause is added to the ongoing record of the

consultation, and the process completes. Note that there is a

recursive relationship between MINITOR and FI"T, such that, so

long as any information is needed to evaluate a PREMISE, or rules

are required to develop the needed information, the two

components are in a recursively dependent and oscillating

relationship until the very first rule invoked, the "goal-rule",

- .

7

ORKYN~L FASE rs
OF POOR QUALtn

GATHER THE
NECESSARY I N F O
USING THE FIND-
OUT MECHANISM

START (7

YES

YES

CONSIDER THE
F I R S T CONDITIO
I N THE PREMISE

CONSIDER THE
NEXT CONDITION
I N THE PREMISE

R E J E C T THE Q (,,,,)
CLUSION OF RULE

OF C U W N T

FIGURE A-2, THF MONITOR PFCHANISFZ

BASED ON [BUCHANAN & SHORTLIFFE, ' 8 4 1

2 7 5

, NO (r%iE:F\ YES ,
LABORATORY

OF THE PARAMETER

APPLY MONITOR TO EACH 1

i RETRIEVE .:= L I S T O F RULES1

I ASK USER FOR THE VALUE i OF THE PARAMETER

WHICH MA'L A I D I N DEDUCING

APPLY ?IONITOR TO EACH RULE
I N THE L I S T Y

"t

FIGURE A-3, THE FINDOU T MECHANI SM
BASED ON CBUCHANAN & SHORTLIFFE, '841

276

is satisfied. I n the process o f evaluating the rules, a great

deal of related and necessary information and data are developed

and retained in various tables and structures in the workspace. - .

They serve two purposes:

(1) They prevent wasted effort that would be required to

redevelop information that has already been obtained,

and to prevent the system f r o m endlessly chasing its

tail.

(2) They provide the necessary history required f o r the

-7 explanations that may be requested by the user.

In addition t o having certainty factors (CFs) for the rules

and the clinical parameters in the knowledge base, the physician,

when asked for either laboratory data or o t h e r information that

the system itself cannot deduce, may attach a CF to his input.

The default, if the physician does not provide a CF, i s assumed

to be +l. The certainty factors are the key to permitting IVlYCIN

to perform inexact reasoning. The rationale, mathematics, and

applications are thoroughly treated in [Shortliffe, 7 6 1 . The

presentation here is very simplified.

A . 4 Certain= Factors

A certainty factor (CF) is a number between -1 and + 1 that

reflects the degree o f belief in a hypothesis. Positive CFs

277

indicate that there i s evidence that the hypothesis is valid; the

larger the CF, the greater the degree of belief. A CF = 1

indicates that the hypothesis i s known to be correct. A negative

CF indicates that the hypothesis i s invalid; CF = -1 m e a n s that

the hypothesis has been effectively disproven. A CF = 0 m e a n s

either that there is n o evidence regarding the hypothesis o r that

the evidence is equally balanced. T h e hypotheses in the system

are statements regarding values o f clinical parameters for the

- ~ .

nodes in the context tree. To properly perform, M Y C I N m u s t deal

w i t h competing hypotheses regarding the value of its clinical

parameters. To do s o , i t stores the list of competing values a n 9

their C F s for each node in the context tree. Positive and-

negative C F s are accumulated separately as m e a s u r e s of belief

(MB) an d m e a s u r e s of disbelief (M)) and added to f o r m a resultant

CF for a clinical parameter. The CF of a conclusion i s the

product o f the CF of the rule that generated the conclusion and

the tally of the C F s of the clinical parameters that w e r e used in

substantiating the conclusion. W h e n a second rule s u p p o r t s the

s a m e conclusion, the CFs are combined by z = x + y(l-x), w h e r e x

is the CF of the first supporting rule, y is the CF of the

succeeding rule and z i s the resultant CF f o r the conclusion.

T h e C F s permit the s y s t e m to report findings to the physician

w i t h varying degrees of certainty such a s , "There is strongly

suggestive evidence that , "There is suggestive evidence

that", "There is w e a k l y suggestive evidence that , etc.
U

99

278

T h e topmost tree is always the patient. Branches are added

successively to the existing nodes as FINDOUT discovers a need - '

for t h e m in attempting to obtain requested information for

MINITOR. T h u s , given only the patient, when MINITOR requests

information f r o m FINDOUT about organisms in order to evaluate the

first condition in the Premise of the goal-rule, FINDOUT

discovers that i t cannot get organism information without having

information about cultures. Thus, context(s) concerning

cultures(s) are spawned f r o m the patient node, f r o m w h i c h

eventually are spawned contexts for the organisms identified by "1

the cultures. For those organisms deemed significant, links

attach to context nodes about the relevant drugs for treating

these organisms. T h u s , the context tree i s t a i l o r e d for each

patient as the s y s t e m progresses through i t s reasoning process.

A . 6 MYCIN's -tions I

One o f the primary design consideration t a k e n in MYCIN w a s

the requirement that the system be able to explain i t s decisions

if physicians w e r e going to accept i t . S e l e c t i n g rules as the

representation o f the system's knowledge greatly facilitated the

implementation of this capability. T h e physician using the

system enters the explanation subsystem automatically w h e n the

consultation phase i s completed, or he m a y enter i t upon d e m a nd

during the consultation session at any point at w h i c h the s y s t e m

279

requests input from him. In the latter case, he can input "WHY"

to request a detailed answer about the question just asked of him

- . o r he can input "QA" to enter the general question-answering

explanation subsystem to explore the decisions and other aspects

of the consultation up to the point of divergence.

The explanation provides several options to the physician.

Since the system automatically enters this mode at the end of the

consultation, the physician may simply input "STOP", which

terminates the system. The explanation system offers several

options to the user and are shown below:

HELP Prints this list.

EQ Explain a specific question asked o f the
physician during the consultation - each has a
sequence number, which must accompany the EQ
request .

IQ Is a prefix f o r a question about information
acquired by the system during the consultation.
The question is phrased in the limited English
that MYCIN can handle.

NOPREFIX A general question i s assumed being asked about
the content o f MYCIN's rules.

PR Requests a particular rule be printed and must be
followed by the rule number.

STOP Exit from explanation system.

RA Permits entry to the rule acquisition module for
recognized experts.

An Example: Suppose a physician wants explanation for question

4 8 . Then he inputs "EQ 4 8 " . To which the systemwould respond:

280

QUESTION 48 WAS ASKED IN ORDER TO FIND OUT THE PATIENT'S DEGREE

OF SICKNESS (O N A SCALE OF 4) IN AN EFFORT TO EXECUTE RULE068.

He may then optionally input "PR68" or "WHAT IS RULE068" to see

what exactly w a s being sought and why.
- .

A.7 'interfaces

N C I N has two interfaces. O n e is for the using physician,

through w h i c h he m a y answer questions posed by the s y s t e m and ask

questions of i t ; the other is a knowledge-acquisition interface

accessible only to experts recognized as s u c h by the system.

1 All of the questions asked of the user have been carefully

designed not to require the language-understanding component.

Thus, instead of asking, W h a t i s the infectious disease

diagnosis for the patient?" it a s k s , "Is there evidence that the

p a t i e n t has a meningitis?" To w h i c h only a simple "yes" or "no"

i s required.

T h e knowledge-acquisition interface, o n t h e other hand,

permits the expert to input a new rule i n stylized English, with

prompting to obtain the rule in the proper sequence: Premise

first, condition by condition, followed by the Action, and then

an E l s e clause if one is required. T h e s y s t e m then translates

the rule into internal form, reordering the conditions of the

Premise if necessary, according to a set of criteria developed to

improve the rule-evaluation process. I t t h e n retranslates the

rule into English and requests that the expert decide w h e t h e r the

2 8 1

r e w r i t t e n version w a s the one intended. If not, the expert m a y

m o d i f y selected parts and is not required to restate the entire

rule unless there has been a gross misunderstanding.

T h e same m e c h a n i s m is used w h e n an expert w a n t s to correct

or m o d i f y an existing rule. In a l l cases, w h e n a n e w or

corrected rule has been approved by the expert, the system checks

to see w h e t h e r the rule i s consistent w i t h the existing rule s e t .

If the n e w or modified rule subsumes or i s subsumed by a n

existing rule, i t i s not readily discoverable, and no test i s

m a d e for this condition. If a rule i s discovered to b e in

conflict w i t h a n existing rule, i t i s rejected. 7

- . .

A.8 E v a l u a t i o n mf MXCD

MYCIN’s performance has been externally evaluated. There

have been different empirical studies of MYCIN’s performance,

each simpler than the previous but all of t h e m time consuming.

The last one w a s reported in [Yu, e t a l , 7 9 1 . The following

d i s c u s s i o n i s based o n [Yu, et a l , 7 9 1 and [Buchanan, 821.

T e n meningitis cases w e r e selected randomly and their

descriptions w e r e presented to seven Stanford physicians and one

student. T h e y w e r e asked to give their therapy recomnendations

for each case. T h o s e reconmendations along w i t h MYCIN’s

reconmendations for each case and actual therapy w e r e collected

in 10 x 10 m a t r i x - ten cases each with ten reconmendations. The

a panel of experts not at Stanford, w e r e asked to give each I

282

reconmendation a zero if, in his opinion, it was unacceptable f o r

the case and one if the recomnendation w a s acceptable. They did

not k n o w , w h i c h , if any, reconxnendation came f r o m a computer.

T h e results a r e shown in the T a b l e A-1.
- .

T a b l e A-1. Ratings of Antimicrobial Selection
by 8 Experts o n 10 Meningitis Cases*

[Buchanan & Shortliffe, 8 4 1

MYCIN 5 2 (65)
Facul ty-1 5 0 (62.5)
Facul ty-2 4 8 (60)
Infectious Disease

F e l l o w 4 8 (60)
F a c u 1 ty-3 46 (57.5)
A c t u a l T h e r a p y 46 (5 7 . 5)

Resident 36 (45)
F a cu 1 tg-5 34 (42.5)
Student 24 (3 0 . 5)

F a c u 1 ty-4 44 (5 5)

_---_______________--------------------------------

1

* Perfect Score = 80; Unacceptable T h e r a p y = 0;
Equivalent o r Acceptable Alternate = 1.

As c a n be seen f r o m the table, the difference between

MYCIN’s score and the score of the infectious disease experts at

S t a n f o r d is not significant. T h u s , the designers of MYCIN c l a i m

to h a v e shown that M Y C I N ’ s recomnendations w e r e viewed by outside

e x p e r t s to be a s good a s the reconmendations of the local

experts, and all o f those better than the reconmendations of

physicians (and the student) w h o are not m e n i n g i t i s experts.

283

Additional useful reference related to MYCIN are:

[Shortliffe, 7 6 1 , [Yu, e t a l , 791, [Buchanan, 8 2 1 , and [Buchanan

& Shortliffe, 841.

Appendix B ~

LIST OF EXPERT SYSTEMS I

- .

The following list of expert systems is based on [Michie, 8 4 1 .

AGE Know1 edge Provides guidance on
Engineering building expert systems

and a set o f tools for
doing s o .

AM

AL/X

Knowledge Generates new mathe-
Engineering matical formulas, terms,

etc.

Knowledge A domain-independent
Engineering development of MYCIN

and PROSPECTOR
usable for developing
rule-based consultation
programs for many fields.

CASNJZT Medicine

CENTAUR M e d i c i ne

CRIB

Long-term management
o f glaucoma.

Interprets pulmonary
function test measure-
ments from patients with
lung disorders.

Fault Diagnosis of faults in
Diagnosis computer hardware

and software.

CRYSALIS Science Infers the structure
of a protein from a
map of electron density
derived from x-ray
crystallographic data

DART Engineering Diagnosing hardware
faults in computer
systems.

[Nii &
Aiello, 791

[Davis &
Lenat, 8 2 1

[Reiter, 8 1 1

[Weiss, 811

[Aikins, 8 0 1

[Addis, 801

[Feigenbaum &
Engelmore,

77 1

Under
development
at Stanford

-4

285

Identification of [Feigenbaum,
organic compounds by et al, 711
analysis of m a s s
spec t rog r a m .

DENDRAL Science

W C I N [V a n M e l l e ,
et al, 811

Knowledge
Engineering

A domain- independent
version of MYCIN,
Usable for developing
rule-based consultation
programs for m a n y fields.

EXPERT Knowledge
Engineering

[Weiss &
Kulikowski,

791

[McDe rmo t t ,
821

[Stefik, 781

A system for designing
and building m o d e l s for
consultation.

EXSEL

GA 1

Computing Configuring the
V U 1 7 8 0 computer system.

Science Infers DNA structures
f r o m pieces (segments)
of structures.

GAMVW

GU I DON

Science Interpreting gamna ray
activation spectra.

[Barstow, 791

Knowledge
Eng i n e e r ing
(E d u c ation)

Case-method tutor
designed to improve a
student’s ability to
diagnose complex problems
in m e d i c i n e and science.

HEACMED M e d i c i n e Psychopharmacology
advisor (constructed
using MYCIN).

[Heiser,
et al, 781

INTERNIST M e d i c i n e Diagnosis in internal
medicine.

[Pople, 771

MACSYMA Ma t h e m a t i c s
A d v i s o r

An automated consultant
for MACSyMA (a n
algebraic m a n i p u l a t i o n
system).

[Genesereth,

[Moses, 751
781

[Chandra-
sekaran, 791

MIX M e d i c i ne Performs diagnoses
related to cholestasis.

286

NAME OF APPLICATION BRIEF
SYSTEM OR AREA DESCRIPTION
PROJECT

REFERENCES

META- Science Induces rules for [Buchanan &
DENDRAL determining molecular Feigenbaum,

structure from mass 7 8 1
spectrometry data.

MYCIN

Science

Medicine

ONCOC IN Medicine

PROS -
PECM)R

Geology

Provides intelligent [Mart in,
advise to a molecular et al, 7 7 1
geneticist on the planning
o f experiments involving
the manipulation of DNA.

Diagnoses certain [Shortliffe,
infectious diseases and 7 6 1
recomnends appropriate
drug treatment. -4

Assists in the manage- [Shortliffe,
ment of cancer patients et al, 8 1 1
on chemotherapy protocols
for forms of lymphoma.

Aids geologists in [Hart & Duda,
evaluating mineral 78 1
sites for potential
deposits.

PSYCO Knowledge Experimental production [F o x &
Engineering system compiler. Rector, 8 2 1
(Medicine)

PUFF Medicine Analyses results o f [Kunz, et al,
pulmonary function t e s t s 7 8 1
for evidence o f possible
pulmonary function
disorder.

R l Knowledge A domain independent [McDermott,
Engineering system for production 8 0 1

287

e..

RITA Knowledge
Engineering

RLL

SACON

SECS

su/x

Knowledge
Engineering

Engineering

Science

Engineering

TEIRESIAS M e d i c i n e

UNITS Knowledge
Engineering

VLS I E n g ine e r ing

M e d i c i n e V M

Provides the user with [Anderson h
a language for defining Gi 1 logly,
intelligent interfaces 761
to external data systems.

Provides the user w i t h
a flexible set of
facilities as a tool
for building his own
knowledge represen-
tation language.

Advises structural
engineers in using the
structural analysis
program MARC.

Proposes schemes for
synthesizing stated
organic compounds.

Forms and updates
hypotheses about
location, velocity, etc.
of objects f r o m primary
signal data (spectra).

Knowledge acquisition
program used with MYCIN.

Interactive language
providing general-
purpose facilities for
knowledge representation.
U s e d for M)LGEN plus
other small applications.

[Greiner &
Lenat, 801

[Bennett &
Engelmore,

79 I

[Wipke,
et al, 771

[Nii &
F e igenbaum,

78 I
[Nii, et al,

821

[Davis &
Lenat, 8 2 1

[Stefik, 801

Assistance in the d e s i g n U n d e r
of very large scale development
integrated circuits. at Stanford

Provides diagnostic [Fagan, 801
and therapeutic suggestions
for critical care o f
patients needing mechanical
assistance with breathing.

Appendix C

FIFTH GENERATION PROJECT

As w a s m e n t i o n e d in the beginning of this thesis, in the

past decade, there had been a m a j o r shift in AI research. I t w a s

f r o m a search for broad, general laws of thinking toward a n

appreciation of specific knowledge - facts, experiential

knowledge, a n d h o w to use knowledge - as the central issue in

intelligent behavior. In addition to this shift, in recent

years, there has been a great deal o f discussion on the growing

need for a n e w generation of computers. In 1981, a research
-4

project k n o w n a s "Fifth G e n e r a t i o n Computer Systems" w a s started

in J a p a n to further the research and development of the next

generation o f computers. T h e Japanese believe that the computers

of the next decade will be used increasingly for non-numeric d a t a

processing s u c h as symbol manipulation and applied AI (KBSs)

[Moto-oka & Stone, 8 4 1 . This appendix provides a brief

introduction to the Fifth Generation Project, its organization,

i t s f u n d i n g , various phases of the project, and its m a j o r goals.

T h e presentation in this appendix i s based o n the book "The F i f t h

Generation" by Edward F e i g e n b a u m and Pamela M c C o r d u c k [Feigenbaum

& M c C o r d u c k , 831, and o n [McCorduck, 831.

2 8 8

2 8 9

In October 1 9 8 1 , Japan’s Ministry of International Trade and

Industry (MITI) sponsored a conference to announce a new national

project. Alongside national projects in supercomputing and

robotics, there would be an effort to develop a new generation

(the fifth, by their reckoning) of computers.

The Fifth Generation is a consortium o f eight firms

(Fujitsu, Hitachi, Nippon Electric Corporation, Mitsubishi,

Matsushita, Oki, Sharp, and Toshiba) and two national

laboratories (the government-owned Nippon Telephone and

Te 1 egraph’ s M u s ashi no Laboratories, and MITI ’ s O W n

Electrotechnical Laboratory). Approximately forty hand-pickeh

researchers from each of the firms and laboratories gathered

under one roof in Tokyo in April 1 9 8 2 at the new Institute for

New Generation Computer Technology (ICQT) . Their director is

Kazuhiro Fuchi, who came from the Electrotechnical Laboratory and

was the intellectual spirit behind the Fifth Generation Project.

At the present all funds come from MITI. Although a

national project is normally a partnership of government and

private funds, the firms participating the Fifth Generation

Project argued that they could not afford to support such a

high-risk project and supply top researchers t o o . MITI agreed,

and is underwriting the project for the first three years.

IcoT’s second-year budget i s $ 1 3 . 6 million, up significantly over

the first year’s budget of $ 2 million. Across the ten-year

period o f the project, assuming typical contributions from the

firms, the total budget will probably approach $ 2 0 0 million.

The fifth generation of computers will not be traditional

computers. - Instead, they will be symbolic inference machines,

capable of reasoning their way swiftly through massive amounts of

knowledge and data. They will be computers that can learn,

associate, make inferences, make decisions, and otherwise behave

in ways usually considered the exclusive province of human

reason. Even their name signals the change: knowledge

information processing systems, or KIPS. KIPS will be the

engines of the information society; s m a l l , robust and

inexpensive. They will appear as universal appliances, as

conmonplace and easy t o use as the telephone. -4

The project’s ten-year plan is divided into three successive-

stages. The first three-year stage is devoted to the development

of a prototype machine, a personal PROLOG workstation that will

have a knowledge base comparable to present-day expert systems

(thousands of rules and thousands of objects) but whose reasoning

powers will be a million logical inferences per second (LIPS), an

order of m a g n i t u d e improvement over software-based PROLOG

implementations on today’s comnon mainframe computers such as the

DEC 2 0 6 0 . The prototype should be finished sometime this year,

with commercial products due a year or s o later. This first

phase is Japan’s opportunity t o c l i m b the learning curve, and is

explicitly planned for that purpose.

The second four-year stage is for engineering

experimentation, prototyping, continuing experiments at

significant applications, and the initial experiments at systems

2 9 1

integration. The first thrust at the major problems of parallel

processing will be done in those years.

The final three-year phase will concentrate on advanced

engineering, building the final major engineering prototypes, and

further systems integration work. The ultimate goal, scheduled

for the early 1 9 9 0 s . is nothing less than an inference

supercomputer, capable of a million to a billion LIPS, with a

knowledge base that can handle tens o f thousands o f inference

rules and hundreds of millions of objects - about the right size

to encompass the Encyclopedia Britannica. The Japanese will rely

- .

heavily on bootstrapping: the project’s earlier work on O w i l k

be used in later hardware design, f o r example.

Fifth Generation machines will understand spoken, written,

and graphical input. The Japanese are launching intensive

research and development into intelligent interfaces, including

natural language processing, speech understanding, and graphics

and image understanding.

Speech understanding research, f o r example, will c o v e r

speech wave analysis, semantic analysis, and pragmatic analysis

(which derives understanding by extracting themes in a given

sentence by detecting focus shifts, and so on). Eventually the

machine will be expected to understand continuous human speech

with a vocabulary o f 5 0 , 0 0 0 words and 95 percent accuracy from a

few hundred or more speakers. The speech understanding system is

also expected to be capable of running a voice activated

typewriter, and of conducting a dialogue with users by means of

I

2 9 2

synthesized speech in Japanese o r English.

Text analysis is also considered part of natural language

processing by the Japanese, although they are aware that the

techniques used for large-scale text analysis are different f r o m

the techniques needed to smooth the w a y for an individual user to

t a l k to a m a c h i n e . This work also involves a highly ambitious

m a c h i n e translation program (initially between English and

Japanese) w i t h a vocabulary of 100,000 wo r d s . T h e goal is 90

percent accuracy (the remaining ten percent to be processed by

humans). Translations will be the product of a n integrated

s y s t e m that takes part in each of the processes f r o m thew

compilation o f the text to printing the translated documents.

- . _

P i c t u r e and image processing are considered almost as

important a s language processing, especially as they contribute

to CAD/CAM an d the effective analysis of aerial and satellite

images, m e d i c a l images, and the like. Eventually the image

understanding s y s t e m is expected to store about 100,000 images.

In this, as in voice recognition, the J a p a n e s e are building on

superb R&D that they did themselves in the 1970s during the

P a t t e r n Information Processing systems (PIPS) national project.

T h e Fifth G e n e r a t i o n Project has captured the imagination of

computer scientists around the w o r l d (almost all m a j o r computer

journals carried "special issues" o n the F i f t h Generation

Project), a n d e v e n began to attract popular attention (major

articles h a v e recently appeared in NEWSWEEK, TIME, BUSINESSWEEK,

FORTUNE).

293

At the heart of the F i f t h Generation Project are KBSs. This

thesis addressed m a j o r issues, concepts, and techniques related

to KBSs. As w a s discussed in Chapter 7, numerous problems exist

in building, m a i n t a i n i n g , and modifying large-scale KBSs. In

addition to these, the Fifth Generation Project faces m a j o r

challenges in parallel architectures, distributed functions, VLSI

design and fabrication.

- .

REFERENCES

[Addis, 801. T. Addis, "Towards an Expert Diagnostic System",

- .
=Technical Journal. vol. 2, 1980, pp. 79-105.

[Aikins, 801. "Prototypes and Production Rules: A Knowledge
Representation for Compu t e r Consultations", Ph.D.
Dissertation, Report No. STAN-CS-80-814, Computer Science
Department, Stanford University, Stanford, CA, 1980.

[Anderson & Gillogly, 761. R. Anderson and J . Gillogly, "The
RAM) Intelligent Terminal (RITA) as a Network Access Aid",
l k u ~ Atwricaa Federat ion Q€ Information Processing Society
(AFIPS), V O ~ . 45, 1976, pp. 501-509.

[Badre, 731. N. Badre, "CLET: A Computer Program That Learns
Arithmetic From An Elementary Textbook", IBM Research Report,
IRC 4235, 1973.

[Barnett, 751. J. Barnett, "A Phonological Rules System",+
Te chn i c a 1 Memo, 1M-5478/000/00, System Development
Corporation, Santa hbnica, CA, 1975.

[Barnett & Bernstein, 771. J. Barnett and M. Bernstein,
"Knowledge Based Systems: A Tutorial", Technical Report,
~(L)-5903/000/000, System Development Corp., Santa MOnica,
CA, 1977.

[Barnett, et al, 8 0 1 . J . Barnett, M. Bernstein, R. Gillman, and
I . Kameny, "The SDC (System Development Corporation) Speech

Lea (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1980, pp.
272-293.

. . Understanding System", in Trendsin Speech Becognitiu 9 w.

[Barr & Feigenbaum, 811. A. Barr and E. Feigenbaum, (Eds.), The
Hand book nf Artificial Intellicence (vols. I and 111,
Kaufman, Los Altos, CA, 1981.

. . .

[Barstow, 791. D. Barstow, "Knowledge Engineering in Nuclear . . .
Physics", Proc. Sixth Int'l * Joint Conf. JUL A r t l f l c l a l
IntelliPence (IJCAI-6), 1979, pp. 34-36.

[Bennet & Engelmore, 791. J. Bennett, and R. Engelmore, "SACON:
A Knowledge-Based Consultant for Structural Analysis", P r o c L
Sixth In t'l. J o i n t C o n f . n n rtificial Intelligence
(IJCAI-61, 1979, pp. 79-81.

. . .

[Bobrow&Winograd, 771. D. Bobrow and T. Winograd, "An Overview
o f KRL, a Knowledge Representation Language", CQgnitive
Science, vol. 1 , no. 1 , 1977.

. .

294

295

[Brachman & Smith, 8 0 1 . R. Brachman and B. Smith, "Special Issue
on Knowledge Representation", -Newsletter, no. 9 0 , Feb.
1 9 8 0 .

[Brachman, 8 3 1 . R. Brachman, "What IS-A I s and Isn't: An
Analysis of Taxonomic Links in Semantic Networks", m u t e r ,
vol. 16. no. 10. 1 9 8 3 , pp. 30-36.

[Brown, e t al, 8 3 1 . J. Brown, R. Burton, and J . de Kleer,
"Knowledge Engineering and Pedagogical Techniques in SOPHIE
(Sophisticated Instructional Environment) I , 1 1 , and 111", in
Intelligent n t o r i n g Svst-, D. Sleeman, and J. Brown
(Eds.), Academic Press, London, 1 9 8 3 .

[Buchanan, 7 5 1 . B. Buchanan, "Applications of Artificial
Intelligence to Scientific Reasoning", Proc. Second=
Jaban m u t e r - Conference, Tokyo, Japan, 1 9 7 5 .

[Buchanan & Feigenbaum, 7 8 1 . B. Buchanan and E. Feigenbaum,
"DENDRAL and META-DENDRAL: Their Applications Dimension", . . . rtificial IntelliPence , v01. 11, 1 9 7 8 , pp. 5 - 2 4 . -4

[Buchanan & Barstow, 8 1 1 . B. Buchanan and D. Barstow, "Maxims
for Knowledge Engineering", Report No. HPP 81-4 , Computer
Science Department, Stanford University, Stanford, CA, 1 9 8 1 .

[Buchanan, 8 2 1 . B. Buchanan, "New Research on Expert Systems",
in Machine Intelligence (vol 1 0) . J . Hayes, D. Michie, and Y.
Pao (Eds.), Ellis Horwood, Chichester, England, 1 9 8 2 , pp.
269-299 .

[Buchanan & Duda, 8 3 1 . B. Buchanan and R. Duda, "Principles o f
Rule-Based Expert Systems", in Advaces in m u t e r s (vol.
2 2 1 , M. Yovits (Ed.), Academic Press, New York, NY, 1 9 8 3 .

[Buchanan & Shortliffe, 8 4 1 . B. Buchanan and E. Shortliffe

iect, Addison-Wesley, *Stanford Beuristi c Propramnlnp pro
Reading, MA, 1 9 8 4 .

(Eds.), Bule - Based - m M Y C I N E x ~ e r i m e n t s ef ExDert S v s t e m s .

[Chairniak, et al, 7 9 1 . E. Chairniak, C. Riesbeck, and D-
rtificial IntelllPence -, Erlbaum, . . . M c D e rmo t t ,

Hillsdale, NJ, 1 9 7 9 .

[Chandrasekaran, 7 9 1 . B. Chandrasekaran, "An Approach to Medical
Diagnosis Based on Conceptual Structures", Proc. Sixth
Int (IJCAI-6), '1. Joint Conf. PLL Artificial Intelliqence
1 9 7 9 .

. . .

296

[Chilausky, et al, 761. R. Chilausky, B. Jacobsen, and R.
Michalski, "An Application of Variable-Valued Logic to
Inductive Learning of Plant Disease Diagnostic Rules", Proc.
~ ix th Annual Int '1, - U l t i D l e -Valued L o p i c , 1976.

[Clancey, 821. W. Clancey, "Tutoring Rules For Guiding A Case - '

Method Dialogue", in - 1 l i - m Svstems, D. Sleeman
and J. Brown (Eds.), Academic Press, London, 1982.

[Cohen & Feigenbaum, 821. P. Cohen and E. Feigenbaum, (Eds.),
Ihc Handbook a€ Artificial Intellipence (vol. 1 1 1 1 , Kaufman,
Los Altos, CA, 1982.

. . .

[Davis, e t al, 751. R. Davis, B. Buchanan, and E. Shortliffe,
"Production Rules as Representation for a Knowledge-Based
Consultation Program", Stanford AI Laboratory Memo, AIM-244,
Report No. STAN-CS-75-519, Computer Science Department,
Stanford University, Stanford, CA, 1975.

[Davis, 741. R. Davis, "Application o f Meta Level Knowledge to
the Construction, Maintenance and U s e of Large Knowledgm
Bases", Ph.D. Dissertation, Stanford AI Laboratory Memo,
AIM-283, Computer Science Department, Stanford University,
Stanford, CA, 1976.

[Davis, e t al, 771. R. Davis, B. Buchanan, and E. Shortliffe.
"Production Rules as a Representation for a
Knowledge-Based Consultation Program", rtificial
Intelligence, vol. 8 , no. 1 , 1977, pp. 15-45.

. . .

[Davis &King, 771. R. Davis and J. King, "An Overview of
Production Systems", in Intelli- (vol. 81, E.
Elock and D. Michie (Eds.), Horwood, Chichester, England,
1977, pp. 300-332.

[Davis, 811. R. Davis, "The Dipmeter Advisor: Interpretation of
Geological Signals", Proc. Seventh Int '1. JolntConf.nn
r t i f i (IJCAI-7). 1981. cia1 Intellrgence . . .

[Davis & Lenat, 821. R. Davis and D. Lenat, w w l e d ~ e - Based
Intelligence, McGraw-Hill, New York, . . . Slvsterlls in Artificial

NY, 1982..

[Duda & Gashing, 811. R. Duda and J . Gashing, "Knowledge-Based
Expert Systems Come of Age", BYTE, vol. 6 , September 1981,
pp. 238-281.

[Englemore & Nii, 771. R. Englemore and H. Nii, "A
Knowledge-Based System for the Interpretation of Protein
X-ray Crystallographic Data", Report No. STAN-(3-77-589,
Computer Science Department, Stanford University, Stanford,
CA, 1977.

297

[Englemore & Terry, 791. R. Englemore and A. Terry, "Structure
and Function of the CRYSALIS System", Proc. W J n t ' l .

(IJCAI-61, 1979, pp.
2 5 0- 2 5 6-.

. . .
J o i n t C o n f . m ~ A r t 1 f l c l a l Intelligence

[Erman, et al, 801. L. Erman, F. Hayes-Roth, V. Lesser, and R. - .
Reddy , "The HEARSAY-I1 Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty",
Survevs, vol. 12, no. 2, 1980, pp. 213-253.

[Erman, et al, 8 1 1 . L. Erman, P. London, and S. Fickas, "The
Design and an Example Use o f HEARSAY-111". Proc. Seventh

(IJCAI-7), 1981, Int'l Joint Conf. QIL Artlflclal IntelliPence
pp. 409-415.

. . .

[Evans, 641. A. Evans, "An ALGOL 6 0 Compiler", in Annual Review
d w - , R. Goodman (Ed.), vol. 4, 1964, pp.
87-124.

[Fagan, e t al, 791. L. Fagan, J. Kunz, E. Feigenbaum, and J .
Os born, "Representation of Dynamic Clinical Knowledge:,
Measurement Interpretation in the Intensive Care Unit", Proc.
Sixth ~ L X W C m L PIL Artificial Intellipence (1 JCAI-61, . . .
1979, pp. 260-262.

[Fagan, 801. L. Fagan, "VM: Representing Time-Dependent
Relations in a Clinical Setting", Ph.D. Dissertation,
Computer Science Department, Stanford University, Stanford,
CA, 1980.

[Fain, et al, 811. J. Fain, D. Gorlin, F. Hayes-Roth, S.
Rosenschein, H . Sowizral, and D. Waterman, "The ROSIE
Language Reference Manual", Technical Report No. N-1647-ARPA,
RAND Corporation, Santa Monica, CA, 1981.

[Feigenbaum, 631. E. Feigenbaum, "Simulation of Verbal Learning
Behavior", in m u t e r s Thoupht, E. Feigenbaum and R.
Feldman (Eds.), McGraw-Hill, San Francisco, CA, 1963, pp.
297-309.

[Feigenbaum, et al, 711. E. Feigenbaum, B. Buchanan, and J .
Lederber-g, "On Generality and Problem Solving: A Case Study
Using the DEMlRAL Program", in Machine W e 1 1 iqence (vol 6),
B. Meltzer and D. Michie (Eds.), Edinburgh University Press,
Edinburgh, 1971, pp. 165-190.

[Feigenbaum, et al, 771. E. Feigenbaum, R. Englemore, and C.
Johnson, "A Correlation Between Crystallographic Computing

Crvstallo-, vol. A33, no. 13, 1977.
and Artificial Intelligence Research", Acta

2 9 8

[FeigenbaumBtMcCorduck, 831. E. Feigenbaum and P. McCorduck,
Intelligence --an's

m u t e r mall- -World, Addison-Wesley, Reading, MA,
1983. -

. . . 33.t Fifth Generation: Artificial

[Feldman, e t al, 721. J. Feldman, J. Low, D. Swinehart, and R. - ._
Taylor, "Recent Developments in SAIL", Report No.
STAN-CS-308, Computer Science Department. and Report No.
AIM-176, A I Laboratory, Stanford University, Stanford, CA,
1972.

[Fikes, et al, 721. R. Fikes, P. Hart, and N. Nilsson, "Learning
and Executing Generalized Robot Plans", 1 f U
IntelliPence, vol. 3, 1972, pp. 251-288.

. . .

[Filman & Weyhrauch, 761. R. Filman and R. Weyhrauch, "An FOL
Primer", Stanford AI Laboratory Memo AIM-288, AI Laboratory,
Stanford University, Stanford, CA, 1976.

[Floyd, 611. R. Floyd, "A Descriptive Language for Symbol
Manipulation", J o u r d p f m , vol. 8, 1961, pp. 579-584. -4

[Forgy, 761. C. Forgy, "A Production System Monitor for Parallel
Computers", Computer Science Department, Technical Report,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[Forgy &McDermott, 771. C. Forgy and J . McDermott, "OPS, a
Domain-Independent Production System Language", Proc. Fifth
Int Inte 1 1 i u (IJCAI-51, ' 1 , loin+ Conf. QXL Artificial . . .
1977, pp 933-939.

[Forgy, 8 0 1 . C. Forgy, "The OPS5 User's hknual", Computer
Science Department, Technical Report, Carnegie-Mellon
University, Pittsburgh, PA, 1980.

[F o x & Rector, 8 2 1 . J . Fox and A . Rector, "Expert Systems for
Primary Medical Care?", W e d i c a , vol. 4, no. 2 & 3, 1982,
pp. 123-130.

[Genesereth, 781. M. Genesereth, "Automated Consultation for
Complex Computer Systems", Ph.D. Dissertation, Harvard
University, Cambridge, MA, 1975.

[Gevarter, 831. W. Gevarter, "Expert Systems: Limited but
Powerful", S F e c t r u , 1983.

[Goldberg & Weiss, 801. R. Goldberg and S . Weiss, "An
Experimental Transformation of a Large Expert System
Knowledge-Base", Working Paper, Department of Computer
Science, Rutgers University, New Brunswick, NJ, 1980.

299

[Goldman, 783. N. Goldman, "AP3 User's Guide", Information
Sciences Institute, University of Southern California, Los
Angeles, CA, 1978.

[Green, 691. C. Green, "The Application o f Theorem-Proving to
Question-Answering Systems", Proc. First Jnt '1. JointConf. ~

an Artificial -Intelligence (IJCAI-I), 1969, pp. 219-237. . . .

[Greiner & Lenat, 801. R. Greiner and D. Lenat, "A
Representation Language Language", proc. h e r i c u association
nf ificial Jntellipence, (M I) , vol. 1 , 1980, pp.
165-169.

. . .

[Hanson & Riseman, 781. A. Hazson and E. Riseman, "VISIONS: A
Computer System for Interpreting Scenes", in m u t e r Vision
-, A . Hanson and E. Riseman (Eds.), Academic Press, New
York, NY, 1978.

. .

[Hart, et al, 681. P. Hart, N. Nilsson, and B. Raphael, "A
Formal Basis for the Heuristic Determination of Minimum Cost

4, no. 2, 1968, pp. 100-107.
Paths", IEEE Transaction% PP Svstem Science Cvbernetics , V O l H

[Hart, e t al. 781. P. Hart, R. Duda, and M. Einaudi, "A
Computer Based Consultation System for Mineral Exploration",
Technical Report, SRI International, Menlo Park, CA, 1978.

[Hayes-Roth, et al, 831. F. Hayes-Roth, D. Waterman, and D.
Lenat, (Eds.) Building E x u A i svs t e r n s , Addison-Wesley,
Reading, MA, 1983.

[Heiser, et al. 781. J. H e i s e r , R. Brooks, and J . Ballard,
"Progress Report: A Computerized Psychopharmacology Advisor",

Neuro - P s v ~ o D h a r m p c o i ~ ~ i c ~ ~ Vienna, Austria, 1 9 7 8 .
Proc. llth Collegiun I nt ernat i m a 1 e

[Hendrix, 7 7 1 . G. Hendrix, "LIFER: A Natural Language Interface . . . Facility", Proc. Fifth Int'l - Joint Conf. pnArtlflcla1
lntellipence (IJCAI-S), 1977, pp. 183-191.

[Hewitt, 711. C. Hewitt, "Description and Theoretical Analysis
(Using Schemas) of P-R: A Language for Proving Theorems
and Manipulating Models in a R o b o t " , Ph.D. Dissertation, AI
Laboratory, hhssachusetts Institute of Technology, Cambridge,
MA, 1971.

[Hewitt, 841. C. Hewitt, "Design Issues in Parallel
Architectures for Artificial Intelligence", Proc.Seventeenth

1984, pp. 418-423.
Hawa 1 i Int'l, Conf. QnSvstem Sciences (HICSS-17), V O ~ . 1 , . .

300

[Klahr, 78). P. Klahr, "Planning Techniques for Rule Acquisition
in Deductive Question Answerings", in Pattern Direct ed
-Inference S\ -ste~&, D. U'a?emn and F. Hayes-Roth. (E d s .) .
Academic P r e s s . New York, .w, 1978.

[Kuipers, 7 5 1 . B. Kuipers. "A Frame for Frames: Representing
d

m q m F J l : i \ - e sc : ~ n t t . D. B O ~ ~ O W ana A .
h o w l e i g t fcr 2ecogoi:ion", in m r c c e n f a . t i -p

Cc!lins ! E i s .) . .\cademic Press. Sew Tork. hY, 1975.

[Kunz. e t a ! . 78;. J . Kunz. 2 . Fallat. D. McC!ung, J . Osborn, 3.
Votteri, H. N i i . J . Aikins, L. Fagan. and E. Feigenbam. "A
P5ysiologica: Ru!c-Based System for Intcryreting Pulmonary
Function T e s t Resu!:~", Report No. I-PP-73-19, Compuzei
Science Department. Stazfoid University, Stanford, CX, 1978.

[Larkin. et al. S O] . J . Lsixin, J. McDermott, D. Simon, and A . --
Simon, "Ex~)ert and Sovice Performance in Soiviiig Physics
Pro b I. exs -, Sc i e z c t , v o i . 208, no. 6 , 1980, pp. 1335-1342.

[Le Faivre, 771. R. Le Faivre, "FUZZY Reference hhnual",
Computer Science Department, Rutgers University, New
Brunswick. NJ, 1977.

[Lowerre & Reddy, 8 0 1 . B. Lowerre and R. Reddy. "The W P Y

i t i o ~ . W. Lea (Ed.). Prentice-Hall, Englewood Cliffs,
Speech . . Understanding System", in Trends in S-h

NJ, 1980, pp. 340-360.

[Malhotra. 751. A. Malhotra. "Knowledge-Based English Language
System for Management Support: Analysis of Requirements-,

(IJCAI-4). 1975, pp. 842-847.
. . . Proc. Fourth lnt ' 1 . Joint- Qn Art1flclal JntellifLUlce

[Martin, et al. 771. N. Martin, P. Friedland. J. King. and M.
Stefik, "Knowledge-Base Management for Experiment Planning in
Molecular Genetics", p r o c . p i f a Jnt'l, l o in tConf .Qn

1ficiaLIntelli~ence (IJCAI-5). 1977, pp. 882-887.

[McCaIla & Cercone, 831. G. McCalla and N. Cercone. "Approaches
to Knowledge Representation". Ihmputer. v o l . 16, no. 10,
1983.

. . .
-

[McDermott, 741. D. McDe rmo t t , "Assimilation of New
Information". MIT A I Laboratory Report N o . AI-TR-291,
hssachusetts Institute of Technology, Cambridge, MA, 1 9 7 4 .

' [McDermott, 801. J . McDermott, "Rl: .b Exgert in the Computer
Systems Domainw, p r o c , m r i c a Q s s o c i a t i0P & Art -
Int e !liuence (AMI), 1980, pp. 269-271.

i c i c i a !

301

[McDermott & Steele, 811. J. McDermott and B. Steele,
"Extending a Knowledge Based System to Deal With Ad hoc
Constraints", Proc.Seventh Int'l. J o i n t C o n f . Q n
r t i f i c d Intellinence (IJCAI-7), 1981. . . -.

[McDermott, 821. J. McDermott, "XSEL: A Computer Salesperson's - '

Assistant", in Intelligence (vol. l o) , J. Hayes, D.
Michie, and Y. Pao (Eds.), Ellis Horwood, Chichester,
England, 1982.

[Michie, 821. D. Michie, "Expert Systems", m u t e r m n a l ,
vol. 23, no. 4, 1982, pp. 369-376.

[Michie, 841. D. Michie (Ed.), Jntroductorp Readings iRExDert
Svst-, Gordon and Breach, New York, NY, 1984.

[Miller, 731. P. Miller, "A Locally-Organized Parser for Spoken
Input", Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, 1973.

[Minsky, 751. M. Minsky, "A Framework for Representing-
, P. Winston Knowledge", in pf Vision

(Ed.), McGraw-Hill, New York. NY. 1975, pp. 211-277.
. .

[Moses, 711. J. Moses, " Symbolic Integration: The Stormy
Decade", c O m n . p f m , vol. 14, no. 8, 1971.

[Moses, 751. J. Moses, "AMACSYMA Primer", Mathlab Memo No. 2,
Computer Science Laboratory, MIT, Cambridge, MA, 1975.

[Mylopoulos, et al, 751. J. h@lopoulos, A. Borgida, P. Cohen, and
N. Roussopoulos, "TORUS - A Natural Language Understanding
System for Data Management", Proc. b u r t h Int'l Joint (=onf.
PB Artificial Int e 1 1 i nenc e (IJCAI-41, 1975, pp. 414-421. . . .

[Nau, 831. D. Nau, "Expert Computer Systems". m u t e r , vol.
16, no. 2. 1983.

[Newell & Simon, 721. A. Newell and H. Simon, Human P r o b l e m
S o l v i u , Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Nii & Feigenbaum, 781. H. Nii and E. Feigenbaum, "Rule-Based
irected Inference Understanding of Signals", in Pattern - D

Svste-, D. Waterman and F. Hayes-Roth (Eds.), Academic
Press, New York, NY, 1978.

[Nii & Aiello, 791. H. Nii and N. Aiello, "AGE (Attempt to
Generalize): A Knowledge-Based Program for Building
Knowledge-Based Programs", Proc. Sixth Jnt '1. JointConf, PP

cia1 Intellinence (IJCAI-6). 1979, pp. 645-655. . . .

302

[Nii, et al, 821. H. Nii, E. Feigenbaum, J . Anton, and A.
Rockmore, "Signal to Symbol Transformation: HASP/SIAP Case
Study", fi , vol. 3, no. 2, 1982, pp. 23-35.

. . . [Nilsson, 711, N. Nilsson, J ' r o b l ~ S o l v i ~ ~ ig htificial
Intellinencg, McGraw-Hill, San Francisco, CA, 1971.

. . . [Nilsson, 801. N. Nilsson, J'rinciDles nf Artificial Intelliqence,
Tioga Publishing C o . , Palo Alto, CA, 1980.

[Osborn, 791. J. Osborn, "Managing the Data from Respiratory
Measurements", Medical Jnstra- , v o l . 13, no. 6, 1979.

[Pople, 771. H. Pople, "The Formation of Composite Hypotheses
in Diagnostic Problem Solving: An Exercise i n Synthetic

Intelliqence (IJCAI-51, 1977.
. . . Reasoning", Proc. Fifth b t ' l . lolntConf. ificial

[Pople, 811. H. Pople, "Heuristic Methods for Imposing Structure
on Ill-structured Problems: The Structuring of Medical

Szolovitz (Ed.), Westview Press, Boulder, Colo., 1981, pp.
. Int e 1 1 igence Diagnostics", in Artificial in W 1 c 1 n e , P .--I

119-185.

[Popplestone, 671. R. Popplestone, "The Design Philosophy o f
POP-2". in Intelligence (vol. 3 1 , D . Michie (Ed.),
Edinburgh University Press, Edinburgh, 1967, pp. 393-402.

[Ralston, 761. A. Ralston (Ed.), Epcvc 1 oced ia ef
Science, Van Nostard, New York, NY, 1976.

[Reddy, et al, 731. R. Reddy, R. Fennel1 and R. Neely, "The
HEARSAY Speech Understanding System: An Example of the
Recognition Process", Proc. D i r d Lnt'l. ~ ~ Q n

ificial Intellrgence (IJCAI-3). 1973, p p . 185-193

PaDers . . [Reddy, 751. R. Reddy, (Ed.) SoeechRecognition: Jnvited
Q€ IEEE Syuposium , Academic Press, N e w York, NY, 1975.

[Reiter, 811. J. Reiter, "AL/X: An Inference System for
Probabilistic Reasoning", Ph.D. Dissertation, Computer
Science Department, University of Illinois, Urbana, IL, 1981.

[Rumelhart, 761. D. Rumelhart, "Toward an Interactive Model of
Reading", Technical Report No. 5 6 , Center for Human
Information Processing, University of California, San Diego,
CA, 1976.

[Sacerdoti, 751. E. Sacerdoti, "A Structure for Plans and
Behavior", Technical Note 109, AI Center, SRI International
Inc., Menlo Park, CA, 1975.

303

[Scott, et al, 771. A. Scott, W. Clancey, R. Davis, and E.
"Explanation Capabilities of Knowledge-Based

u t a t i o d J_ourna ln f
Shortliffe,
Production Systems", b e r i c a n

uistics, vol. 62, 1977.

[Shortliffe, 761. E. Shortliffe, Medical
Consultations: MYCIN, American Elsevier, N e w York, NY, 1976.

[Shortliffe & Buchanan, 751. E. Shortliffe and B. Buchanan, "A
Model of Inexact Reasoning in Medicine", thematical
Biosciences, vol. 23, 1975, pp 351-379.

[Shortliffe, et al, 811. E. Shortliffe, A. Scott, M. Bischoff,
A. Campbell, W. Van M e l l e , and C. Jacobs, "ONCOCIN: An Expert
System for Oncology Protocol Management", Proc, Seventh
Int (IJCAI-71, '1. Joint S h f - pa Artificial Jntellixence . . .
1981, pp. 876-881.

[Stallman & Sussman, 771. R. Stallman, G. Sussman, "Fo rwa r d
Reasoning and Dependency-Directed Backtracking in a System
for Computer-Aided Circuit Analysis", if icial
Intellinence, vol. 9, 1977, pp. 135-196.

. . .

[Stefik &Martin, 771. M. Stefik and N. Martin, "A Review o f
Knowledge-Based Problem Solving a s a Basis for a Genetics
Experiment Design System", Computer Science Department,
Heuristic Programning Project Memo HPP-75-5, Stanford
University, Stanford, CA, 1977.

[Stefik, 781. M. Stefik, "Inferring DNA Structures from
, vol. 1 1 , 1978, Segmentation Data", Artificial Jntellipence . . .

pp. 85-114.

[S t e f i k , 8 0 1 . M. Stefik. "Planning w i t h Constraints". Technical
Report No. 784, Computer Science Department, Stanford
University, Stanford, CA, 1980.

[Stefik, et al. 8 2 1 . M. Stefik, J. Aikins, R. Blazer, J. Benoit,
L. Birnbaum, F. Hayes-Roth, and E. Sacerdoti, "The
Organization of Expert Systems: A Tutorial", Artificial
Jntelligence, vol. 18, 1982, pp. 135-173.

. . .

[Sussman &McDermott, 721. G. Sussman and D . McDermott, "From
PLANNER to CONNIVER: A Genetic Approach", American Federation
Q€ t i u Processing Societv (AFIPS), 1972, pp.
1171-1180.

[Sussman, 771. G. Sussman, "Electrical Design: A Problem for

(I JCAI-51, 1977, pp.
Artificial Intelligence Research", P r o c , Fifth Jnt '1. Joint . . .
Conf. PIL Artificial intelligence
894-900.

304

[Swartout, 7 7 1 . W. Swartout, "A Digitalis Therapy Advisor With
Explanations", ProcL Fifth Jnt '1 Joint Conf. an Artificial
Intelligence (IJCAI-51, 1 9 7 7 , pp. 819-825 .

. . .

[Teitelman, 7 2 3 . W. Teitleman, "Do What I Mean (WHIM): The

Teitleman (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1 9 7 2 .
Programmer's Assistant", in omDuters Automation 9 w.

[Teitelman, 7 8 1 . W. Teitelman, "INTERLISP Reference Manual",
XEROX PARC, Palo Alto, CA, 1 9 7 8 .

[Tversky, 7 2 1 . A. Tversky, "Elimination by Aspects: a Theory of
Choice", Psvchological Review , V O ~ . 7 9 , 1 9 7 2 , pp. 281-299.

[Van M e l l e , 7 9 1 . W. Van Melle, "A Domain-Independent Producton
Rule System for Consultation Programs", proc. Sixth Int'l.
Joint Conf. Q n h-tlf1cla1 . . . M e 1 1 i g e n c n (IJCAI-6), 1 9 7 9 , pp.
9 2 3 - 9 2 5 .

[Van M e l l e , et al, 8 1 1 . W. Van M e l l e , E. Shortliffe, and B.
Buchanan, "EMYCIN: A Domain-Independent System That Aids In.
Constructing Knowledge Based Consultation Programs", in

chine IntelliEence (vol. 9 1 , Infotech State of the Art
Report 9 , no. 3 , Pergamon Infotech, Maidenhead, England,
1 9 8 1 .

[Weiss, 7 8 1 . S. W e i s s , "AModel-Based Method for Computer-Aided . . . Medical Decision-Making", Artificial J n t e 1 1 i pence , vol. 1 1 , -
no. 2 , 1 9 7 8 .

[Weiss & Kulikowski, 7 9 1 . S . W e i s s and C. Kulikowski, "EXPERT:
A System for Developing Consultation Models", Proc. Sixth
Int (I JCAI - 6 , '1. Joint Conf. PIL Artificial Intelligence . . .
1 9 7 9 , pp. 9 4 2 - 9 4 7 .

[Weiss, 8 1 1 . S. W e i s s , "Expert Consultation Systems: The EXPERT

Infotech State o f the Art Report 9 , no. 3 , Pergamon Infotech,
Maidenhead, England, 1 9 8 1 .

and CASNET Projects", in Machine Intelligence (vol. 9 1 ,

[Weizenbaum, 661. J . Weizenbaum, "ELIZA: A Computer Program for
the Study of Natural Language Comnunication Between Man and
Machine", w, vol. 9 , no. 1, 1 9 6 6 , pp. 3 6 - 4 5 .

[Wiederhold, 8 4 1 . G . Widerhold, "Knowledge and Database
Management Systems", Software, vol. 1 , no. 1 , 1 9 8 4 .

[Winograd, 7 2 1 . T. Winograd, Understanding Natural Lanpuape,
Academic Press, New York, NY, 1 9 7 2 .

305

[Winograd, 751 . T. Winograd, "Frame Representations and the
Declarative/Procedural Controversy", in w e s e n t a t ion jlpd
Underst- Studies in Gunitlve Science , D. Bobrow, A.
Collins (Eds.), Academic Press, New York, NY, 1 9 7 5 , pp.

. .

1 8 8 - 2 1 0 .

. . . [Winston, 7 7 1 . P. Wins ton, ificial -Intelligence.
Addison-Wesley, Reading, MA, 1977 .

[Wipke, et al, 7 7 1 . W. Wipke, H. Braun, G. Smith, F. Choplin,
and W. Sieber, "SECS (Simulation and Evaluation of Chemical
Synthesis): Strategy and Planning", in m u t e r U i s t e d

, W. Wipke and W. House (Eds.), American
Chemical Society, Washington, DC, 1 9 7 7 , pp. 97-127.

[Wolf &Woods, 8 0 1 . J . Wolf and W. Woods, "The HWIM Speech

Lea (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1 9 8 0 , pp.
. . Understanding System", in Trends hSpeecbBecop.nition 9 w.

3 1 0 - 3 3 9 .

[Woods, 7 3 a 1 . W. Woods, "An Experimental Parsing System for-
Transition Network Gramnars", in N a t u r d m P r o c e s s i n g ,
R. Rustin (Ed.), Algorithmics Press, New York, NY, 1 9 7 3 , pp.
11 1 - 1 5 4 .

[Woods, 7 3 b] . W. Woods, "Progress in Natural Language
Understanding: An Application to Lunar Geology", W r i c u
Federat i o a P f I n f P r 0 C e s s i n . g S o cietv ' (AFIPS), V O ~ .
4 2 , 1 9 7 3 , pp. 4 4 1 - 4 5 0 .

[Yu, et al, 7 9 1 . V. Yu, L. Fagan, S. Wraith, W. Clancey, A .
Scott, J . Hannigan, R. Blum, B. Buchanan, S . Cohen, R. Davis,
J . Aikins, W. Van M e l l e , E. Shortliffe, and S. Axline,
"Antimicrobial Selection for Meningitis by a Computerized
C o n s u l t a n t - A Blinded Evaluation by Infectious Disease
Experts", Journal nf A m e r i c a s Medical Bssociatipn , v o l . 2 4 1 ,
1 9 7 9 .

[Zadeh, 7 5 1 . L. Zadeh. "The Concept of a Linguistic Variable and
its Application to Approximate Reasoning - I", Informati=
Sciences, vol. 8 , no. 3, 1 9 7 5 , pp. 1 9 9 - 2 4 9 .

ABSTRACI'

After being in a relatively dormant state for many years,

only recently is artificial intelligence (AI) - that branch of

computer science that attempts to have machines emulate

intelligent behavior - accomplishing practical results. Most of

these results can be attributed to the design and use of

Knowledge-Based Systems, KBSs (or expert systems) - problem

solving computer programs that can reach a level of performance

comparable to that of a human expert in some specialized problem

domain [Nau, 8 3 1 . These systems can act as a consultant f o r -

various requirements like medical diagnosis, military threat

analysis, project risk assessment, etc. These systems possess

knowledge to enable them to make intelligent decisions. They

are, however, not meant to replace the human specialists in any

particular domain.

e..

In this thesis, a critical survey of recent work in

interactive KBSs i s reported, explaining KBS concepts and issues

and techniques used to construct KBS. Application considerations

to construct KBSs and potential future research areas in KBSs are

identified. .

A case study (MYCIN) of a KBS, a list o f existing KBSs, and

an introduction to the Japanese Fifth Generation Computer Project

are provided as appendicies. Finally, an extensive set of

KBS-related references are provided at the end of this report.

306

BIOGRAPHICAL SKETCH

Srinu Kavi w a s born in India on October 28, 1957. He

attended Andhra University and Indian Institute of Science. He

has a Masters degree in Physics from IISc, Bangalore, in 1980.

He cam e to the University of Southwestern Louisiana in 1982,

pursuing graduate s t u d i e s in Computer Science, with a focus on

Management Information Systems.

307

1. Report No.
/ N - @ L

7. Authorht

2. Government Accession No. / g j &~-f l 3. Recipient's Catalog No.

~[8. Performing Organization Report No.

4. Title and Subtitle
;&+ I ! '

USL/NGT-19-010-900: KNOWLEDGE BASED SYSTEMS: A CRITICAL
SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

5. Report Oate 3A 7L-
December 1 1 , 1 9 8 4 6 / ~ ~ P / p L

6. Performing Organization Code

University of Southwestern Louisiana
The Center for Advanced Computer Studies
P.O. Box 44330

SRINU KAVI
,

9. Performing Organization Name and Address

11. Contract or Grant No.

NGT-19-010-900

10. Work Unit No.

Lafayette, LA 70504-4330
12. Sponsoring Agency Name and Address

14. Sponsoring Agency Code

15. Supplementary Notes

13. Type of Report and Period Covered

FINAL; 07/01/85 - 12/31/87

16. Abstract

17. Key Words (Suggested by Author(sl1

Knowledge-Based Systems, Informa-
tion Storage and Retrieval Systems

This Working Paper Series entry presents a detailed critical survey of knowledge based systems.
After being in a relatively dormant state for many years, only recently is artificial intelligence (AI) -
that branch of computer science that attempts to have machines emulate intelligent behavior -
accomplishing practical results. Most of these results can be attributed to the design and use of
Knowledge-Based Systems, KBSs (or expert systems) - problem solving computer programs that can
reach a level of performance comparable to that of a human expert in some specialized problem
domain. These systems can act as a consultant for various requirements like medical diagnosis, mili-
tary threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to
make intelIigent decisions. They are, however, not meant to replace the human specialists in any
particular domain. In this thesis, a critical survey of recent work in interactive KBSs is reported,
KBSs are identified. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to
the Japanese Fifth Generation Computer Project are provided as appendices. Finally, an extensive
set of KBS-related references are provided at the end of this report.

18. Distribution Statement

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's
Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

21. NO. of Pages 19. Security Classif. (of this report) 20. Security Classif. (of this page)

Unclassified . Unclassified 306

.

22. Rice'

.
For sale by the National Technical Information Service, Springfield, Virginia 22161

